967 resultados para photo luminescence
Resumo:
Molecular beam epitaxy (MBE) growth of (InyGa1-yAs/GaAs1-xSbx)/GaAs bilayer quantum well (BQW) structures has been investigated. It is evidenced by photo luminescence (PL) that a strong blue shift of the PL peak energy of 47 meV with increasing PL excitation power from 0.63 to 20 mW was observed, indicating type II band alignment of the BQW. The emission wavelength at room temperature from (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW is longer (above 1.2 μ m) than that from InGaAs/GaAs and GaAsSb/GaAs SQW structures (1.1 μ m range), while the emission efficiency from the BQW structures is comparable to that of the SQW. Through optimizing growth conditions, we have obtained room temperature 1.31 μ m wavelength emission from the (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW. Our results have proved experimentally that the GaAs-based bilayer (InyGa1-yAs/GaAs1-xSbx)/GaAs quantum well is a useful structure for the fabrication of near-infrared wavelength optoelectronic devices. © 2005 Elsevier B.V. All rights reserved.
Resumo:
InGaN/GaN quantum dots were grown on the sapphire (0 0 0 1) substrate in a metalorganic chemical vapor deposition system. The morphologies of QDs deposited on different modified underlayer (GaN) surfaces, including naturally as grown, Ga-mediated, In-mediated, and air-passivated ones, were investigated by atomic force microscopy (AFM). Photo luminescence (PL) method is used to evaluate optical properties. It is shown that InGaN QDs can form directly on the natural GaN layer. However, both the size and distribution show obvious inhomogeneities. Such a heavy fluctuation in size leads to double peaks for QDs with short growth time, and broad peaks for QDs with long growth time in their low-temperature PL spectra. QDs grown on the Ga-mediated GaN underlayer tends to coalesce. Distinct transform takes place from 3D to 2D growth on the In-mediated ones, and thus the formation of QDs is prohibited. Those results clarify Ga and In's surfactant behavior. When the GaN underlayer is passivated in the air, and together with an additional low-temperature-grown seeding layer, however, the island growth mode is enhanced. Subsequently, grown InGaN QDs are characterized by a relatively high density and an improved Gaussian-like distribution in size. Short surface diffusion length at low growth temperature accounts for that result. It is concluded that reduced temperature favors QD's 3D growth and surface passivation can provide another promising way to obtain high-density QDs that especially suits MOCVD system. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
ZnO vertical well-aligned nanorods were grown on A1N/sapphire by using metal-organic chemical vapor deposition. We first observed the ZnO net-like structures under the nanorods. The different strain was determined in these two layers by using double crystal X-ray diffraction, Raman spectra, which revealed that the nanorods were relaxed and the net-like structures were strained. The optical properties of two layers were measured by using the cathodoluminescence and photo luminescence and the shift of UV peaks was observed. Moreover, the growth mechanism of the ZnO nanorods and the net-like structures is discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The temperature and pressure dependences of band-edge photo luminescence from ZnO microrods have been investigated. The energy separation between the free exciton (FX) and its first order phonon replica (FX-1LO) decreases at a rate of k(B)T with increasing temperature. The intensity ratio of the FX-1LO to the bound exciton (BX) emission is found to decrease slightly with increasing pressure. All of the exciton emission peaks show a blue shift with increasing pressure. The pressure coefficient of the FX transition, longitudinal optical (LO) phonon energy, and binding energy of BX are estimated to be 21.4, 0.5, and 0.9 meV/GPa, respectively. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
By combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid soul-cc molecular beam epitaxy. Four [011] stripe-patterned substrates different in pitch, depth, and sidewall angle, respectively, are used in this work. The surface morphology obtained by atomic force microscopy shows that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate. The mechanism determining the nucleation position of the InAs dots is discussed. The optical properties of the InAs dots on the patterned substrates are also investigated by photo luminescence. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High-quality In0.25Ga0.75As films were grown on low-temperature (LT) ultra-thin GaAs buffer layers formed on GaAs (0 0 1) substrate by molecular beam epitaxy. The epilayers were studied by atomic force microscopy (AFM), photo luminescence (PL) and double crystal X-ray diffraction (DCXRD), All the measurements indicated that LT thin buffer layer technique is a simple but powerful growth technique for heteroepitaxy. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence (PL) and photo induced current transient spectroscopy (PICTS) have been used to study deep levels in semi-insulating (SI) InP prepared by annealing undoped InP in pure phosphorus (PP) and iron phosphide (IP) ambient. Defects are much fewer in IP SI-InP than in PP SI-InP. Deep-level-related PL emission could only be detected in IP SI-InP. The results indicate that Fe diffusion inhibits the thermal formation of a number of defects in annealed InP. A complex defect has been formed in the annealing process in the presence of Fe.
Resumo:
We report the passivation of two deep copper-related acceptor levels in Cu-diffused p-type GaAs by the group-I element lithium. The deep-level-transient-spectroscopy (DLTS) signals of the well-known Cu-related levels with apparent activation energies 0.15 eV and 0.40 eV disappear in Cu-diffused samples when they are diffused with Li, but can be reactivated by annealing. Photoluminescence measurements show a corresponding disappearance and reappearance of the copper-related luminescence at 1.36 eV. Also we observe with DLT'S an energy level at E(V) + 0.32 eV in the Cu-Li-diff-used samples. The level is neither present in the Cu-diffused samples before Li diffusion nor in Cu-Li-diffused samples after annealing. As the level is not observed in starting materials or solely Li-diffused samples we suggest that it is related to a Cu-Li complex.
Resumo:
The photoluminescence of Cd1-xMnxTe with x=0.25, 0.40, and 0.60 is investigated at 77 K and different pressures. The pressure coefficients of the photoluminescence bands Cd0.75Mn0.25Te and Cd0.6Mn0.4Te are found to be positive and the magnitudes are about 8 X 10(-3) eV/kbar, which is in good agreement with the pressure coefficients of the interband transition. The pressure coefficient of the photoluminescence bands for Cd0.4Mn0.6Te is found to be -6 X 10(-3) eV/kbar, which is quite different from the pressure coefficient of the interband transition. The possible transition mechanism is discussed in terms of group theory and crystal field theory.
Resumo:
We observed yellow colored light emission bands from multiwalled carbon nanotubes in photo-luminescence (PL) experiments. The light emission band features indicate that the PL bands are associated with the electronic properties inherent to the carbon nanotube (CNT) structures.
Resumo:
SiOx films with oxygen concentrations ranging 13-46 at.% were deposited by plasma enhanced chemical vapor deposition (PECVD) technique using: pure SiH4 and N2O mixture. Erbium was then implanted at an energy of 500 KeV with dose of 2x10(15) ions/cm(2). The samples were subsequently annealed in N-2 for 20 sec at temperatures of (300-950 degrees C). Room temperature (RT) photo-luminescence (PL) data were collected by Fourier Transform Infrared Spectroscopy (FTIS) with an argon laser at a wavelength of 514.5 nm and an output power from 5 to 2500 mw. The intense room-temperature luminescence was observed around 1.54 mu m. The luminescence intensity increases by 2 orders of magnitude as compared with that of Er-doped Czochralski (CZ) Si. We found that the Er3+ luminescence depends strongly on the SiOx microstructure. Our experiment also showed that the silicon grain radius decreased with increasing oxygen content and finally formed micro-crystalline silicon or nano-crystalline silicon. As a result, these silicon small particles could facilitate the energy transfer to Er3+ and thus enhanced the photoluminescence intensity.
Resumo:
Layered organic-inorganic composite materials (C5H10N3)PbX4 (X = Br 1, Cl 2) containing histaminium dications were grown via a solution-cooling process, and their structure and optical properties were determined. The organic ligand-histaminium introduced into the corner-sharing octahedra of the 'PbX4- layer' contains both primary ammonium and imidazolium different from the traditionally primary amine found in this system. As comparison, another analogous amine of 3-amino-1,2,4-triazol was used as ligand to coordinate with PbBr2 in acid solution. A novel complex (C2H2N4)PbBr3 (3) was obtained with zigzag PbBr2 chains different from the PbX4 layer in compound as 1 and 2. The hybrid (C5H10N3)PbX4 show exciton absorption at 339 nm for X = Cl and 419 nm for X = Br with the corresponding emission at 360 and 436 nm, respectively. The different PbBr2 chain structure of compound 3 does not show photo luminescence.
Resumo:
A novel solution-phase method for the preparation of Au@ZnO core-shell composites was described. With this method, the composites were grown without heating that is usually needed in other solution methods. Atomic force microscopy (AFM) results show that the diameter of Au@ZnO core-shell composites is about 10.5 nm. X-ray photoelectron spectroscopy (XPS) was applied to characterize Au@ZnO core-shell composites. The optical properties of Au@ZnO core-shell composites, including UV-vis absorption and photo luminescence (PL), were observed at room temperature.
Resumo:
In this paper the synthesis, photo luminescence and electroluminescence investigation of the novel tetrakis beta-diketonate of rare-earth complexes such as M[Eu(dbM)(4)] and M[Tb(acac)(4)] with a variety of cationic ligands, M=Li(+), Na(+) and K(+) have been investigated. The emission spectra of the Eu(3+) and Tb(3+) complexes displayed characteristic narrow bands arising from intraconfigurational transitions of trivalent rare-earth ions and exhibited red color emission for the Eu(3+) ion ((5)D(0) -> F(J), J=0-6) and green for the Tb(3+) ion ((5)D(4) -> (7)F(J), J = 6-0). The lack of the broaden emission bands arising from the ligands suggests the efficient intramolecular energy transfer from the dbm and acac ligands to Eu(3+) and Tb(3+) ions, respectively. In accordance to the expected, the values of PL quantum efficiency (eta) of the emitting (5)D(0) state of the tetrakis(beta-diketonate) complexes of Eu(3+) were higher compared with those tris-complexes. Therefore, organic electroluminescent (EL) devices were fabricated with the structure as follows: indium tin oxide (ITO)/hole transport layer (HTL) NPB or MTCD/emitter layer M[RE(beta-diketonate)(4)] complexes)/Aluminum (Al). All the films were deposited by thermal evaporation carried out in a high vacuum environment system. The OLED light emission was independent of driving voltage, indicating that the combination of charge carriers generates excitons within the M[RE(beta-diketonate)(4)] layers, and the energy is efficiently transferred to RE(3+) ion. As a best result, a pure red and green electroluminescent emission was observed from the Eu(3+) and Tb(3+) devices, confirmed by (X,Y) color coordinates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report the effect of solvent on the rhodamine 6G encapsuled into channels of mesoporous silica, synthesized by two-step process that gives intermediary stable hybrid micelles. Mesoporous materials have been obtained by the method that involves surfactant micelles (mainly cationic) and inorganic precursor of the structure to be obtained. MSU-X type mesoporous silica has been synthesized with polyethylene oxide surfactant as the directing-structure agent and tetraethyl orthosilicate Si(OEt)(4) as the silica source. The influence of the solvent on the encapsulation of rhodamine dye was systematically explored, specially its influence on the luminescence properties. Rhodamine 6G encapsuled into mesoporous silica channel was characterized by UV-Vis and luminescence spectroscopies, scanning electron microscopy, small angle x ray scattering and N(2) sorption-desorption. The pore size and the solvent effects into luminescence dye encapsuled into mesoporous silica channels are observed in the visible absorption and emission spectra of rhodamine 6G. The intense photo luminescence band of rhodamine 6G dye is in 500 to 600 nm region. The observed shift of the absorption and emission bands can be assigned to the effect of the solvents dielectric constant and pore size of mesoporous silica.