699 resultados para data warehouse tuning aggregato business intelligence performance
Resumo:
The purpose of this research is to propose a procurement system across other disciplines and retrieved information with relevant parties so as to have a better co-ordination between supply and demand sides. This paper demonstrates how to analyze the data with an agent-based procurement system (APS) to re-engineer and improve the existing procurement process. The intelligence agents take the responsibility of searching the potential suppliers, negotiation with the short-listed suppliers and evaluating the performance of suppliers based on the selection criteria with mathematical model. Manufacturing firms and trading companies spend more than half of their sales dollar in the purchase of raw material and components. Efficient data collection with high accuracy is one of the key success factors to generate quality procurement which is to purchasing right material at right quality from right suppliers. In general, the enterprises spend a significant amount of resources on data collection and storage, but too little on facilitating data analysis and sharing. To validate the feasibility of the approach, a case study on a manufacturing small and medium-sized enterprise (SME) has been conducted. APS supports the data and information analyzing technique to facilitate the decision making such that the agent can enhance the negotiation and suppler evaluation efficiency by saving time and cost.
Resumo:
“La Business Intelligence per il monitoraggio delle vendite: il caso Ducati Motor Holding”. L’obiettivo di questa tesi è quello di illustrare cos’è la Business Intelligence e di mostrare i cambiamenti verificatisi in Ducati Motor Holding, in seguito alla sua adozione, in termini di realizzazione di report e dashboard per il monitoraggio delle vendite. L’elaborato inizia con una panoramica generale sulla storia e gli utilizzi della Business Intelligence nella quale vengono toccati i principali fondamenti teorici: Data Warehouse, data mining, analisi what-if, rappresentazione multidimensionale dei dati, costruzione del team di BI eccetera. Si proseguirà mediante un focus sui Big Data convogliando l’attenzione sul loro utilizzo e utilità nel settore dell’automotive (inteso nella sua accezione più generica e cioè non solo come mercato delle auto, ma anche delle moto), portando in questo modo ad un naturale collegamento con la realtà Ducati. Si apre così una breve overview sull’azienda descrivendone la storia, la struttura commerciale attraverso la quale vengono gestite le vendite e la gamma dei prodotti. Dal quarto capitolo si entra nel vivo dell’argomento: la Business Intelligence in Ducati. Si inizia descrivendo le fasi che hanno fino ad ora caratterizzato il progetto di Business Analytics (il cui obiettivo è per l'appunto introdurre la BI i azienda) per poi concentrarsi, a livello prima teorico e poi pratico, sul reporting sales e cioè sulla reportistica basata sul monitoraggio delle vendite.
Resumo:
Mestrado em Gestão de Sistemas de Informação
Resumo:
A importância dos sistemas de data warehousing e business intelligence é cada vez mais pronunciada, no sentido de dotar as organizações com a capacidade de guardar, explorar e produzir informação de valor acrescido para os seus processos de tomada de decisão. Esta realidade é claramente aplicável aos sectores da administração pública portuguesa e, muito em particular, aos organismos com responsabilidades centrais no Ministério da Saúde. No caso dos Serviços Partilhados do Ministério da Saúde (SPMS), que tem como missão prover o SNS de sistemas centrais de business intelligence, o apelo dos seus clientes, para que possam contar com capacidades analíticas nos seus sistemas centrais, tem sido sentido de forma muito acentuada. Todavia, é notório que, tanto os custos, como a complexidade, de grande parte destes projetos têm representado uma séria ameaça à sua adoção e sucesso. Por um lado, a administração pública tem recebido um forte encorajamento para integrar e adotar soluções de natureza open source (modelo de licenciamento gratuito), para os seus projetos de sistemas de informação. Por outro lado, temos vindo a assistir a uma vaga de aceitação generalizada de novas metodologias de desenvolvimento de projetos informáticos, nomeadamente no que diz respeito às metodologias Agéis, que se assumem como mais flexíveis, menos formais e com maior grau de sucesso. No sentido de averiguar da aplicabilidade do open source e das metodologias Ágeis aos sistemas de business intelligence, este trabalho documenta a implementação de um projeto organizacional para a SPMS, com recurso a ferramentas open source de licenciamento gratuito e através de uma metodologia de desenvolvimento de natureza Ágil.
Resumo:
RESUMO - A Segurança do Doente tem assumido uma relevância crescente nas organizações de saúde, resultado da divulgação de diversos estudos que revelaram a magnitude deste problema e simultaneamente, de uma maior pressão por parte da opinião pública e da comunicação social. Este estudo pretende desenvolver e avaliar a performance de um sistema eletrónico de deteção de eventos adversos, baseado num Data Warehouse, por comparação com os resultados obtidos pela metodologia tradicional de revisão dos registos clínicos. O objetivo principal do trabalho consistiu em identificar um conjunto de triggers / indicadores de alerta que permitam detetar potenciais eventos adversos mais comuns. O sistema desenvolvido apresentou um Valor Preditivo Positivo de 18.2%, uma sensibilidade de 65.1% e uma especificidade de 68.6%, sendo constituído por nove indicadores baseados em informação clínica e 445 códigos do ICD-9-CM, relativos a diagnósticos e procedimentos. Apesar de terem algumas limitações, os sistemas eletrónicos de deteção de eventos adversos apresentam inúmeras potencialidades, nomeadamente a utilização em tempo real e em complemento a metodologias já existentes. Considerando a importância da problemática em análise e a necessidade de aprofundar os resultados obtidos neste trabalho de projeto, seria relevante a sua extensão a um universo mais alargado de instituições hospitalares, estando a sua replicabilidade facilitada, uma vez que o Data Warehouse tem por base um conjunto de aplicações disseminadas a nível nacional. O desenvolvimento e a consolidação dos sistemas eletrónicos de deteção de eventos adversos constitui inegavelmente uma área de futuro, com reflexos ao nível da melhoria da informação existente nas organizações e que contribuirá decisivamente para a melhoria dos cuidados de saúde prestados aos doentes.
Resumo:
El projecte tracte d' implementar una solució de Business Intelligence sota la plataforma Microsoft.Aquest projecte va destinat al Departament de Comptabilitat de l' Ajuntament de Cambrils, i està relacionat amb la funció del control de les despeses i els ingressos
Resumo:
Cada vez mais o tempo acaba sendo o diferencial de uma empresa para outra. As empresas, para serem bem sucedidas, precisam da informação certa, no momento certo e para as pessoas certas. Os dados outrora considerados importantes para a sobrevivência das empresas hoje precisam estar em formato de informações para serem utilizados. Essa é a função das ferramentas de “Business Intelligence”, cuja finalidade é modelar os dados para obter informações, de forma que diferencie as ações das empresas e essas consigam ser mais promissoras que as demais. “Business Intelligence” é um processo de coleta, análise e distribuição de dados para melhorar a decisão de negócios, que leva a informação a um número bem maior de usuários dentro da corporação. Existem vários tipos de ferramentas que se propõe a essa finalidade. Esse trabalho tem como objetivo comparar ferramentas através do estudo das técnicas de modelagem dimensional, fundamentais nos projetos de estruturas informacionais, suporte a “Data Warehouses”, “Data Marts”, “Data Mining” e outros, bem como o mercado, suas vantagens e desvantagens e a arquitetura tecnológica utilizada por estes produtos. Assim sendo, foram selecionados os conjuntos de ferramentas de “Business Intelligence” das empresas Microsoft Corporation e Oracle Corporation, visto as suas magnitudes no mundo da informática.
Resumo:
In the last few years, a new generation of Business Intelligence (BI) tools called BI 2.0 has emerged to meet the new and ambitious requirements of business users. BI 2.0 not only introduces brand new topics, but in some cases it re-examines past challenges according to new perspectives depending on the market changes and needs. In this context, the term pervasive BI has gained increasing interest as an innovative and forward-looking perspective. This thesis investigates three different aspects of pervasive BI: personalization, timeliness, and integration. Personalization refers to the capacity of BI tools to customize the query result according to the user who takes advantage of it, facilitating the fruition of BI information by different type of users (e.g., front-line employees, suppliers, customers, or business partners). In this direction, the thesis proposes a model for On-Line Analytical Process (OLAP) query personalization to reduce the query result to the most relevant information for the specific user. Timeliness refers to the timely provision of business information for decision-making. In this direction, this thesis defines a new Data Warehuose (DW) methodology, Four-Wheel-Drive (4WD), that combines traditional development approaches with agile methods; the aim is to accelerate the project development and reduce the software costs, so as to decrease the number of DW project failures and favour the BI tool penetration even in small and medium companies. Integration refers to the ability of BI tools to allow users to access information anywhere it can be found, by using the device they prefer. To this end, this thesis proposes Business Intelligence Network (BIN), a peer-to-peer data warehousing architecture, where a user can formulate an OLAP query on its own system and retrieve relevant information from both its local system and the DWs of the net, preserving its autonomy and independency.
Resumo:
Il presente elaborato ha come oggetto l’analisi delle prestazioni e il porting di un sistema di SBI sulla distribuzione Hadoop di Cloudera. Nello specifico è stato fatto un porting dei dati del progetto WebPolEU. Successivamente si sono confrontate le prestazioni del query engine Impala con quelle di ElasticSearch che, diversamente da Oracle, sfrutta la stessa componente hardware (cluster).
Resumo:
Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.
Resumo:
Context: Global Software Development (GSD) allows companies to take advantage of talent spread across the world. Most research has been focused on the development aspect. However, little if any attention has been paid to the management of GSD projects. Studies report a lack of adequate support for management’s decisions made during software development, further accentuated in GSD since information is scattered throughout multiple factories, stored in different formats and standards. Objective: This paper aims to improve GSD management by proposing a systematic method for adapting Business Intelligence techniques to software development environments. This would enhance the visibility of the development process and enable software managers to make informed decisions regarding how to proceed with GSD projects. Method: A combination of formal goal-modeling frameworks and data modeling techniques is used to elicitate the most relevant aspects to be measured by managers in GSD. The process is described in detail and applied to a real case study throughout the paper. A discussion regarding the generalisability of the method is presented afterwards. Results: The application of the approach generates an adapted BI framework tailored to software development according to the requirements posed by GSD managers. The resulting framework is capable of presenting previously inaccessible data through common and specific views and enabling data navigation according to the organization of software factories and projects in GSD. Conclusions: We can conclude that the proposed systematic approach allows us to successfully adapt Business Intelligence techniques to enhance GSD management beyond the information provided by traditional tools. The resulting framework is able to integrate and present the information in a single place, thereby enabling easy comparisons across multiple projects and factories and providing support for informed decisions in GSD management.
Resumo:
This thesis addresses the question of how business schoolsestablished as public privatepartnerships (PPPs) within a regional university in the English-speaking Caribbean survived for over twenty-one years and achieved legitimacy in their environment. The aim of the study was to examine how public and private sector actors contributed to the evolution of the PPPs. A social network perspective provided a broad relational focus from which to explore the phenomenon and engage disciplinary and middle-rangetheories to develop explanations. Legitimacy theory provided an appropriate performance dimension from which to assess PPP success. An embedded multiple-case research design, with three case sites analysed at three levels including the country and university environment, the PPP as a firm and the subgroup level constituted the methodological framing of the research process. The analysis techniques included four methods but relied primarily on discourse and social network analysis of interview data from 40 respondents across the three sites. A staged analysis of the evolution of the firm provided the ‘time and effects’ antecedents which formed the basis for sense-making to arrive at explanations of the public-private relationship-influenced change. A conceptual model guided the study and explanations from the cross-case analysis were used to refine the process model and develop a dynamic framework and set of theoretical propositions that would underpin explanations of PPP success and legitimacy in matched contexts through analytical generalisation. The study found that PPP success was based on different models of collaboration and partner resource contribution that arose from a confluence of variables including the development of shared purpose, private voluntary control in corporate governance mechanisms and boundary spanning leadership. The study contributes a contextual theory that explains how PPPs work and a research agenda of ‘corporate governance as inspiration’ from a sociological perspective of ‘liquid modernity’. Recommendations for policy and management practice were developed.
Resumo:
With advances in science and technology, computing and business intelligence (BI) systems are steadily becoming more complex with an increasing variety of heterogeneous software and hardware components. They are thus becoming progressively more difficult to monitor, manage and maintain. Traditional approaches to system management have largely relied on domain experts through a knowledge acquisition process that translates domain knowledge into operating rules and policies. It is widely acknowledged as a cumbersome, labor intensive, and error prone process, besides being difficult to keep up with the rapidly changing environments. In addition, many traditional business systems deliver primarily pre-defined historic metrics for a long-term strategic or mid-term tactical analysis, and lack the necessary flexibility to support evolving metrics or data collection for real-time operational analysis. There is thus a pressing need for automatic and efficient approaches to monitor and manage complex computing and BI systems. To realize the goal of autonomic management and enable self-management capabilities, we propose to mine system historical log data generated by computing and BI systems, and automatically extract actionable patterns from this data. This dissertation focuses on the development of different data mining techniques to extract actionable patterns from various types of log data in computing and BI systems. Four key problems—Log data categorization and event summarization, Leading indicator identification , Pattern prioritization by exploring the link structures , and Tensor model for three-way log data are studied. Case studies and comprehensive experiments on real application scenarios and datasets are conducted to show the effectiveness of our proposed approaches.