992 resultados para Weierstrass Zeta Function
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the spectral functions, and in particular the zeta function, associated to a class of sequences of complex numbers, called of spectral type. We investigate the decomposability of the zeta function associated to a double sequence with respect to some simple sequence, and we provide a technique for obtaining the first terms in the Laurent expansion at zero of the zeta function associated to a double sequence.
Resumo:
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues (“the energy levels”) follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.
Resumo:
This paper proves that every zero of any n th , n ≥ 2, partial sum of the Riemann zeta function provides a vector space of basic solutions of the functional equation f(x)+f(2x)+⋯+f(nx)=0,x∈R . The continuity of the solutions depends on the sign of the real part of each zero.
Resumo:
Nano-indentation is a technique used to measure various mechanical properties like hardness, Young's modulus and the adherence of thin films and surface layers. It can be used as a quality control tool for various surface modification techniques like ion-implantation, film deposition processes etc. It is important to characterise the increasing scatter in the data measured at lower penetration depths observed in the nano-indentation, for the technique to be effectively applied. Surface roughness is one of the parameters contributing for the scatter. This paper is aimed at quantifying the nature and the amount of scatter that will be introduced in the measurement due to the roughness of the surface on which the indentation is carried out. For this the surface is simulated using the Weierstrass-Mandelbrot function which gives a self-affine fractal. The contact area of this surface with a conical indenter with a spherical cap at the tip is measured numerically. The indentation process is simulated using the spherical cavity model. This eliminates the indentation size effect observed at the micron and sub-micron scales. It has been observed that there exists a definite penetration depth in relation to the surface roughness beyond which the scatter is reduced such that reliable data could be obtained.
Resumo:
We find the sum of series of the form Sigma(infinity)(i=1) f(i)/i(r) for some special functions f. The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mezo's paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of pi.
Resumo:
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Nous exprimons la mesure de Mahler 2-supérieure et 3-supérieure de certaines fonctions rationnelles en terme de valeurs spéciales de la fonction zêta, de fonctions L et de polylogarithmes multiples. Les résultats obtenus sont une généralisation de ceux obtenus dans [10] pour la mesure de Mahler classique. On améliore un de ces résultats en réduisant une combinaison linéaire de polylogarithmes multiples en termes de valeurs spéciales de fonctions L. On termine avec la réduction complète d’un cas particuler.
Resumo:
We prove that
∑k,ℓ=1N(nk,nℓ)2α(nknℓ)α≪N2−2α(logN)b(α)
holds for arbitrary integers 1≤n1<⋯
Resumo:
We compute the analytic torsion of a cone over a sphere of dimensions 1, 2, and 3, and we conjecture a general formula for the cone over an odd dimensional sphere. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sei $\pi:X\rightarrow S$ eine \"uber $\Z$ definierte Familie von Calabi-Yau Varietaten der Dimension drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invarianter Untermodul $M\subset H^3_{DR}(X/S)$ von Rang vier, sodass der Picard-Fuchs Operator $P$ auf $M$ ein sogenannter {\em Calabi-Yau } Operator von Ordnung vier ist. Sei $k$ ein endlicher K\"orper der Charaktetristik $p$, und sei $\pi_0:X_0\rightarrow S_0$ die Reduktion von $\pi$ \uber $k$. F\ur die gew\ohnlichen (ordinary) Fasern $X_{t_0}$ der Familie leiten wir eine explizite Formel zur Berechnung des charakteristischen Polynoms des Frobeniusendomorphismus, des {\em Frobeniuspolynoms}, auf dem korrespondierenden Untermodul $M_{cris}\subset H^3_{cris}(X_{t_0})$ her. Sei nun $f_0(z)$ die Potenzreihenl\osung der Differentialgleichung $Pf=0$ in einer Umgebung der Null. Da eine reziproke Nullstelle des Frobeniuspolynoms in einem Teichm\uller-Punkt $t$ durch $f_0(z)/f_0(z^p)|_{z=t}$ gegeben ist, ist ein entscheidender Schritt in der Berechnung des Frobeniuspolynoms die Konstruktion einer $p-$adischen analytischen Fortsetzung des Quotienten $f_0(z)/f_0(z^p)$ auf den Rand des $p-$adischen Einheitskreises. Kann man die Koeffizienten von $f_0$ mithilfe der konstanten Terme in den Potenzen eines Laurent-Polynoms, dessen Newton-Polyeder den Ursprung als einzigen inneren Gitterpunkt enth\alt, ausdr\ucken,so beweisen wir gewisse Kongruenz-Eigenschaften unter den Koeffizienten von $f_0$. Diese sind entscheidend bei der Konstruktion der analytischen Fortsetzung. Enth\alt die Faser $X_{t_0}$ einen gew\ohnlichen Doppelpunkt, so erwarten wir im Grenz\ubergang, dass das Frobeniuspolynom in zwei Faktoren von Grad eins und einen Faktor von Grad zwei zerf\allt. Der Faktor von Grad zwei ist dabei durch einen Koeffizienten $a_p$ eindeutig bestimmt. Durchl\auft nun $p$ die Menge aller Primzahlen, so erwarten wir aufgrund des Modularit\atssatzes, dass es eine Modulform von Gewicht vier gibt, deren Koeffizienten durch die Koeffizienten $a_p$ gegeben sind. Diese Erwartung hat sich durch unsere umfangreichen Rechnungen best\atigt. Dar\uberhinaus leiten wir weitere Formeln zur Bestimmung des Frobeniuspolynoms her, in welchen auch die nicht-holomorphen L\osungen der Gleichung $Pf=0$ in einer Umgebung der Null eine Rolle spielen.
Resumo:
We give a partition of the critical strip, associated with each partial sum 1 + 2z + ... + nz of the Riemann zeta function for Re z < −1, formed by infinitely many rectangles for which a formula allows us to count the number of its zeros inside each of them with an error, at most, of two zeros. A generalization of this formula is also given to a large class of almost-periodic functions with bounded spectrum.
Resumo:
This correspondence considers block detection for blind wireless digital transmission. At high signal-to-noise ratio (SNR), block detection errors are primarily due to the received sequence having multiple possible decoded sequences with the same likelihood. We derive analytic expressions for the probability of detection ambiguity written in terms of a Dedekind zeta function, in the zero noise case with large constellations. Expressions are also provided for finite constellations, which can be evaluated efficiently, independent of the block length. Simulations demonstrate that the analytically derived error floors exist at high SNR.