Gál-type GCD sums beyond the critical line
Data(s) |
01/09/2016
|
---|---|
Resumo |
We prove that ∑k,ℓ=1N(nk,nℓ)2α(nknℓ)α≪N2−2α(logN)b(α) holds for arbitrary integers 1≤n1<⋯<nN1≤n1<⋯<nN and 0<α<1/20<α<1/2 and show by an example that this bound is optimal, up to the precise value of the exponent b(α)b(α). This estimate complements recent results for 1/2≤α≤11/2≤α≤1 and shows that there is no “trace” of the functional equation for the Riemann zeta function in estimates for such GCD sums when 0<α<1/20<α<1/2. |
Formato |
text |
Identificador |
http://centaur.reading.ac.uk/63245/1/beyondhalf4.pdf Bondarenko, A., Hilberdink, T. <http://centaur.reading.ac.uk/view/creators/90000758.html> and Seip, K. (2016) Gál-type GCD sums beyond the critical line. Journal of Number Theory, 166. pp. 93-104. ISSN 0022-314X doi: 10.1016/j.jnt.2016.02.017 <http://dx.doi.org/10.1016/j.jnt.2016.02.017> |
Idioma(s) |
en |
Publicador |
Elsevier |
Relação |
http://centaur.reading.ac.uk/63245/ creatorInternal Hilberdink, Titus 10.1016/j.jnt.2016.02.017 |
Tipo |
Article PeerReviewed |