The Zeros of Riemann Zeta Partial Sums Yield Solutions to f(x) + f(2x) + · · · + f(nx) = 0


Autoria(s): Mora Martínez, Gaspar; Sepulcre, Juan Matias
Contribuinte(s)

Universidad de Alicante. Departamento de Análisis Matemático

Curvas Alpha-Densas. Análisis y Geometría Local

Data(s)

26/06/2014

26/06/2014

01/08/2013

Resumo

This paper proves that every zero of any n th , n ≥ 2, partial sum of the Riemann zeta function provides a vector space of basic solutions of the functional equation f(x)+f(2x)+⋯+f(nx)=0,x∈R . The continuity of the solutions depends on the sign of the real part of each zero.

Identificador

Mediterranean Journal of Mathematics. 2013, 10(3): 1221-1233. doi:10.1007/s00009-012-0237-x

1660-5446 (Print)

1660-5454 (Online)

http://hdl.handle.net/10045/38405

10.1007/s00009-012-0237-x

Idioma(s)

eng

Publicador

Birkhäuser

Relação

http://dx.doi.org/10.1007/s00009-012-0237-x

Direitos

The final publication is available at Springer via http://dx.doi.org/10.1007/s00009-012-0237-x

info:eu-repo/semantics/openAccess

Palavras-Chave #Functional equations #Zeros of partial sums of the Riemann zeta function #nth characteristic of a real number #Análisis Matemático
Tipo

info:eu-repo/semantics/article