975 resultados para Transmission electron microscopy tem
Resumo:
Present work provides an electrodeposition based methodology for synthesizing Ni-rich, Ag-Ni nanowires using an alumina template. Ag-Ni system shows negligible solid solubility in the bulk. Detailed structural and compositional characterization of as-synthesized nanowires using transmission electron microscopy technique revealed a two phase microstructure. Regions along and near the nanowire axis contained crystalline Ag-Ni solid solution phase with Ag-rich composition. Whereas, regions away from the axis and near the nanowire boundary predominantly contained nanocrystalline Ni-rich, Ni-Ag solid solution phase. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.
Resumo:
The structure and chemistry of the interface between a Si(111) substrate and an AlN(0001) thin film grown by metalorganic vapor phase epitaxy have been investigated at a subnanometer scale using high-angle annular dark field imaging and electron energy-loss spectroscopy. 〈1120̄〉AlN ∥ 〈110〉Si and 〈0001〉AlN ∥ 〈111〉 Si epitaxial relations were observed and an Al-face polarity of the AlN thin film was determined. Despite the use of Al deposition on the Si surface prior to the growth, an amorphous interlayer of composition SiNx was identified at the interface. Mechanisms leading to its formation are discussed. © 2010 American Institute of Physics.
Resumo:
Microstructure characterization is important for controlling the quality of laser welding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft and an unambiguous identification of phases in the weldment was accomplished. It was found that there are gamma-FeCrNiC austenite solid solution dendrites as the matrix, (Nb, Ti) C type MC carbides, fine and dispersed Ni-3 Al gamma' phase as well as Laves particles in the interdendritic region of the seam zone. A brief discussion was given for their existence based on both kinetic and thermodynamic principles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report the quantitative strain characterization in semiconductor heterostructures of silicon-germaniums (Si(0.76)Geo(0.24)) grown on Si substrate by an ultra-high vacuum chemical vapor deposition system. The relaxed SiGe virtual substrate has been achieved by thermal annealing of the SiGe film with an inserted Ge layer. Strain analysis was performed using a combination of high-resolution transmission electron microscopy and geometric phase analysis.
Resumo:
A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 degrees C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model. (c) 2005 American Institute of Physics.
Resumo:
A transmission electron microscopy study of triple-ribbon contrast features in a ZnTe layer grown epitaxially on a vicinal GaAs (001) substrate is reported. The ribbons go through the layer as threading dislocations near the [<(11)over bar 2>](111) or [112](<(11)over bar 1>) directions. Each of these (with a 40 nm width) has two narrow parts enclosed by three partial dislocations (with a 20 nm spacing). By contrast analysis and contrast simulation, the ribbons have been shown to be composed of two partially overlapping stacking faults. Their origin is attributed to a forced reaction between two crossing perfect misfit dislocations.
Resumo:
We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.
Resumo:
The microstructure of silicon on defect layer, a new type of silicon-on-insulator material using proton implantation and two-step annealing to obtain a high resistivity buried layer beneath the silicon surface, has been investigated by transmission electron microscopy. Implantation induced a heavily damaged region containing two types of extended defects involving hydrogen: {001} platelets and {111} platelets. During the first step annealing, gas bubbles and {111} precipitates formed. After the second step annealing, {111} precipitates disappeared, while the bubble microstructure still remained and a buried layer consisting of bubbles and dislocations between the bubbles was left. This study shows that the dislocations pinning the bubbles plays an important role in stabilizing the bubbles and in the formation of the defect insulating layer. (C) 1996 American Institute of Physics.
Resumo:
Ultrastructural investigations of eggs can be important in helping to understand embryonic development. There are few transmission electron microscope studies of marine arthropod eggs, however, as they have proved difficult to fix and infiltrate with resin. Here, we describe a modification of a standard method that allows the preparation of the quite different eggs of the marine copepod, Acartia tonsa and the lobster, Homarus gammarus, for transmission electron microscopy. By using double fixation and an extended resin infiltration time we obtained good preparations for electron microscopy. We anticipate that these modifications to the standard protocol will be widely applicable and useful for the study of the eggs and early developmental stages of many marine arthropod taxa. Les recherches sur l'ultrastructure des oeufs peuvent être importantes en aidant à comprendre le développement embryonnaire. Il existe cependant peu d'études en microscopie électronique à transmission sur les oeufs d'arthropodes marins, car il est difficile de les fixer et d'y infiltrer de la résine. Dans ce travail, nous décrivons une modification de la méthode standard, qui permet la préparation pour la microscopie électronique à transmission d'oeufs aussi différents que ceux du copépode marin Acartia tonsa et du homard Homarus gammarus. En utilisant une double fixation et un temps plus long d'infiltration de la résine, nous avons obtenu de bonnes préparations pour la microscopie électronique. Nous prévoyons que ces modifications du protocole standard seront largement applicables et utiles pour l'étude des oeufs et des premiers stades de développement de nombreux taxons d'arthropodes marins.