965 resultados para far-field
Resumo:
Fabrication of InGaAlAs MQW buried heterostructure (BH) lasers by narrow stripe selective MOVPE is demonstrated in this paper. High quality InGaAlAs MQWs were first grown by narrow stripe selective MOVPE without any etching process and assessed by analysing the cross sections and PL spectrums of the InGaAlAs MQWs. Furthermore, BHs were fabricated for the InGaAlAs MQW lasers by a developed unselective regrowth method, instead of conventional selective regrowth. The InGaAlAs MQW BH lasers exhibit good device characteristics, with a high internal differential quantum efficiency of 85% and a low internal loss of 6.7 cm(-1). Meanwhile, narrow divergence angles of the far field pattern are obtained for the fabricated lasers.
Resumo:
Unselective regrowth for fabricating 1.5-mu m InGaAsP multiple-quantum well (MQW) distributed-feedback (DFB) buried heterostructure (BH) lasers is developed. The experimental results exhibit superior characteristics, such as a low threshold of 8.5 mA, high slope efficiency of 0.55 mW/mA, circular-like far-field patterns, the narrow line-width of 2.5 MHz, etc. The high performance of the devices effectively proves the feasibility of the new method to fabricate buried heterostructure lasers. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Time-resolved light-current curves, spectra, and far-field distributions of ridge structure InGaN multiple quantum well laser diodes grown on sapphire substrate are measured with a temporal resolution of 0.1 ns under a pulsed current condition. Results show that the thermal lensing effect clearly improves the confinement of the higher order modes. The thermal lens leads to a lower threshold current for the higher order modes, a higher slope efficiency, and a change in the lasing mode of the device. The threshold current for the higher modes decreases by about 5 mA in every 10 ns in a pulse, and the slope efficiency increases by 7.5 times on the average when higher modes lase. (c) 2006 American Institute of Physics.
Resumo:
High output power very-small-aperture laser has been created on 650 nm edge emitting laser diodes. The far-field output power is 0.4 mW at the 25 mA driving current, and the highest output power exceeds 1 mW. The special fabrication process is described and the failure mechanism leading to the short lifetime of the devices is discussed.
Resumo:
Mode characteristics of equilateral triangle resonators (ETRs) are analyzed based on the symmetry operation of the point group C-3v. The results show that doubly degenerate eigenstates can be reduced to the A(1) and A(2) representations of C-3v, if the longitudinal mode number is a multiple of 6; otherwise, they form the E irreducible representation Of C-3v. And the one-period length for the mode light ray is half of the perimeter of the ETR. Mode Q-factors are calculated by the finite-difference time-domain (FDTD) technique and compared with those calculated from far-field emission based on the analytical near-field pattern for TE and TM modes. The results show that the far-field emission based on the analytical field distribution can be used to estimate the mode Q-factor, especially for TM modes. FDTD numerical results also show that Q-factor of TE modes reaches maximum value as the longitudinal mode number is a multiple of 7. In addition, photoluminescence spectra and measured Q-factors are presented for fabricated ETR with side lengths of 20 and 30 mu m, and the mode wavelength intervals are compared with the analytical results.
Resumo:
A new type of self-aligned spotsize converter (SSC) integrated 1.55 mum DFB lasers had been proposed in this article. The upper optical confinement layer and the butt-coupled tapered thickness waveguide were regrown simultaneously, which not only offered the separate optimization of the active region and the integrated SSC, but also reduced the difficulty of the butt-joint selective regrowth. The vertical and horizontal far field angles were 9degrees and 12degrees respectively, the 1- dB misalignment tolerance were both 3.6 and 3.4 mum. The directed coupling efficiency to tapered single mode fiber was 48%.
Resumo:
In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A specially designed quantum well laser for achieving extremely low vertical beam divergence was reported and theoretically investigated. The laser structure was characterized by two low index layers inserted between the waveguide layers and the cladding layers. The additional layers were intended to achieve wide optical spread in the cladding layers and strong confinement in the active region. This enabled significant reduction of beam divergence with no sacrifice in threshold current density. The numerical results showed that lasers with extremely low vertical beam divergence from 20 degrees down to 11 degrees and threshold current density of less than 131 A/cm(2) can be easily achieved by optimization of the structure parameters. Influences of individual key structure parameters on beam divergence and threshold current density are analyzed. Attention is also paid to the minimum cladding layer thicknesses needed to maintain low threshold current densities and low internal loss. The near and far field patterns are given and discussed. (C) 1998 American Institute of Physics.
Resumo:
We have developed a novel InP-based, ridge-waveguide photonic integrated circuit (PIC), which consists of a 1.1-um wavelength Y-branch optical waveguide with low loss and improved far field pattern and a 1.3-um wavelength strained InGaAsP-InP multiple quantum-well superluminescent diode, with bundle integrated guide (BIG) as the scheme for monolithic integration. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10 mW at 120 mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than I dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x8 degrees, resulting in good fiber coupling. The compactness, simplicity in fabrication, good superluminescent performance, low transmission loss and estimated low coupling loss prove the BIG and Y-branch method to be a feasible way for integration and make the photonic integrated circuit of Y-branch and superluminescent diode an promising candidate for transmitter and transceiver used in fiber optic gyroscope.
Resumo:
Modes in equilateral triangle resonator (ETR) are analyzed and classified according to the irreducible representations of the point group C-3v., Both the analytical method based on the far field emission and the numerical method by FDTD technique are used to calculate the quality factors (Q-factors) of the doubly degenerate states in ETR. Results obtained from the two methods are in reasonable agreement. Considering the different symmetry properties of the doubly degenerate eigenstates, we also discuss the ETR joined with an output waveguide at one of the vertices by FDTD technique and the Pade approximation. The variation of Q-factors versus width of output waveguide is analyzed. The numerical results show that doubly degenerate eigenstates of TM0.36 and TM0.38 whose wavelengths are around 1.5 mu m in the resonator with side-length of 5 mu m have the Q-factors larger than 1000 when the width of the output waveguide is smaller than 0.4 mu m. When the width of the output waveguide is set to 0.3 mu m, the symmetrical states that are more efficiently coupled to output waveguide have Q-factors about 8000, which are over 3 times larger than those of asymmetric state.
Resumo:
A pure surface plasmon polariton (SPP) model predicted that the SPP excitation in a slit-groove structure at metallodielectric interfaces exhibits an intricate dependence on the groove width P. Lalanne et al. [Phys. Rev. Lett. 95, 263902 (2005); Nat. Phys. 2, 551 (2006)]. In this paper, we present a simple far-field experiment to test and validate this interesting theoretical prediction. The measurement results clearly demonstrate the predicted functional dependence of the SPP coupling efficiency on groove width, in good agreement with the SPP picture.
Resumo:
Phase-locked oxide-confined ring-defect photonic crystal vertical-cavity surface-emitting laser is presented. The coupled-mode theory is employed to illustrate the two supermodes of the device, in-phase and out-of-phase supermode. Experimental results verify the two supermodes by the characteristics of the spectra and the far field patterns. At the lower current, only the out-of-phase supermode is excited, whereas under the higher current, the in-phase supermode also appears at the shorter wavelength range. In addition, the measured spectral separation between the two supermodes agrees well with the theoretical result.
Resumo:
The simulation of a plasmonic very-small-aperture laser is demonstrated in this paper. It is an integration of the surface plasmon structure and very-small-aperture laser (VSAL). The numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field (3.5 mu m far from the emitting surface), and the output power density can be enhanced over 30 times of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope.
Resumo:
A tapered distributed feedback quantum cascade laser emitting at lambda similar to 8.1 mu m is reported. Utilising a tapered waveguide structure with a surface metal grating, the device exhibited singlemode operation over the temperature range of 100 to 214 K, with sidemode suppression ratio > 20 dB and a nearly diffraction limited far-field beam divergence angle of 5.4 degrees.
Resumo:
The relationship between liquid crystal orientational ordering and optical diffraction properties is investigated for a two-dimensional square photonic lattice fabricated in a polymer-dispersed liquid crystal (PDLC) composite. Modifications of the nematic director field in the liquid crystal domains were induced by an external applied voltage and by heating over the nematic-isotropic (N-I) phase transition. They were studied by optical polarization microscopy and by analysing far-field optical diffraction patterns. The intensities of various diffraction orders (from the zeroth up to the eighth diffraction order) were monitored with a CCD camera, and their variations were correlated with the modifications of the director field.