992 resultados para Llegar a ser profesor de matemáticas de primaria
Resumo:
La dificultad en la resolución de problemas no sólo estriba en realizar operaciones de suma, resta, multiplicación y división sino que hay varios factores. Se trata de analizar los conceptos implicados en el desarrollo del pensamiento matemático. Las características de los problemas con estructura aditiva y multiplicativa que aparecen en los libros de texto de matemáticas de Educación Primaria. Analizar el rol de los problemas verbales en los libros de texto de matemáticas y la orientación que tienen las creencias del profesor acerca de la enseñanza-aprendizaje de la matemática elemental. Indagar cómo se encuentran los conocimientos de contenido pedagógico del profesor respecto a los diferentes tipos de problemas aditivos. En el primer análisis de los libros de texto en el ámbito de las matemáticas, los datos que se presentan en el estudio, se obtienen de cuatro editoriales. La editorial Santillana (1999) y Anaya (2002) en el caso de España y la editorial Fundación Alianza (2000) y Don Bosco (2000) en el caso de Paraguay. Se analizan en total 24 libros de Educación Primaria. Para el segundo análisis, del rol que juegan los problemas en el libro de texto se ha considerado además del libro del alumno, el libro guía del profesor de las dos editoriales españolas, porque contienen aspectos específicos como el programa que se promueve para la resolución de problemas y estrategias. En cuanto al estudio del pensamiento del profesor se presentan 200 profesores de España y Paraguay, se incluyen en la muestra 26 colegios públicos de ambos países, 13 concertados pertenecientes a la ciudad de Salamanca y 15 colegios privados (instituciones católicas) de Paraguay. Se presenta un cuestionario para evaluar las creencias del profesor acerca de la enseñanza de las matemáticas, otro para la práctica educativa y otro orientado a analizar el conocimietno del profesor a partir de la estimación del grado de dificultad de diferentes tipos de problemas aditivos. Para la resolución de problemas matemáticos, se parte de las nociones artiméticas en las que se analiza, los orígenes del conocimiento numérico, el desarrollo del conteo y la importancia del concepto parte-todo, en la que se plantea cómo se adquieren y qué desarrollo siguen estos contenidos aritméticos básicos. Se hace distinción entre los que surgen desde la experiencia informal o conocimientos implícitos de los niños y los que se adquieren desde la enseñanza explícita. Las Estructuras Aditivas, donde se describen las situaciones problemáticas a las que los alumnos se enfrentan de manera informal y que se encuentran relacionadas con un tipo de estructura semántica y los diferentes modelos del proceso de resolución de problemas que se proponen. Los diferentes aspectos analizados constatan que los problemas que habitualmente aparecen en los libros de texto presentan una naturaleza altamente estereotipada en la que no es necesario poner en marcha sofisticadas estrategias que permitan llegar a la resolución. En el estudio centrado en el análisis del pensamiento del profesor a partir del estudio de las creencias y conocimientos de contenido pedagógico, los resultados llevan a considerar dos cuestiones de especial relevancia, la relación entre creencias y conocimientos con la experiencia de los profesores y la utilización de los libros de texto. Por lo que los profesores con más experiencia son los que promueven mejores estrategias de resolución de problemas y una orientación más constructivista. Los niños necesitan contextos ricos y variados de situaciones problemáticas. Se necesita contextualizar la resolución de problemas matemáticos en situaciones cotidianas del entorno del alumno. Se debe entender la resolución del problema como el auténtico eje de los contenidos aritméticos y no al servicio del ejercicio de las operaciones.
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen en inglés
Resumo:
Se presenta una experiencia desde la práctica intensiva que se llevó a cabo en el colegio Francisco José de Caldas en los grados segundo y tercero de primaria, en la cual se retoma en conjunto los diferentes énfasis y teorías abordadas en el proceso de formación docente, como son: planeación de actividades, recursos didácticos, gestión docente y evaluación, basados en referentes teóricos como el Grupo DECA, la Teoría de las situaciones didácticas de Brousseau y el trabajo colaborativo. Se reconoce cómo el aporte de cada uno de éstos, proporciona avances y logros en diferentes ámbitos; además, se da a conocer el modelo propio de actividad matemática implementado en el aula por las practicantes, para ello se presenta la organización de los momentos de la clase y los aportes del mismo.
Resumo:
En esta investigación pretendemos obtener una mayor información relativa al conocimiento de los profesores de matemáticas, en particular, al conocimiento del contenido y estudiantes (KCS, por sus siglas en inglés –Knowledge of Content and Student ) mientras éstos se encuentran inmersos en su propia práctica. Nos enfocamos en un modelo del conocimiento matemático para la enseñanza (MKT, por sus siglas en inglés – Mathematical Knowledge for Teaching ). Es un estudio de 2 casos, los instrumentos de recogida de información son: observación de aula, cuestionarios y entrevistas a los dos casos. Finalmente, aportamos distintos indicadores del KCS que pueden ser considerados para identificar y comprender el KCS, éstos pueden ayudar a analizar a otros profesores o ser considerados en la formación del profesorado de bachillerato.
Resumo:
Este artículo tiene como objeto de investigación el aprendizaje y como objeto matemático el concepto de función con estudiantes sordos de educación básica y media, con el propósito de mostrar cómo el problema social y cultural que tiene esta población para el aprendizaje de las matemáticas puede ser minimizado mediante la intervención del profesor, a partir de secuencias didácticas de enseñanza y la asistencia de un entorno informático. Para ello, se ha utilizado como marco teórico las situaciones didácticas de Brousseau y los registros de representación semiótica de Duval, y como metodología la Ingeniería didáctica.
Resumo:
Tesis (Maestría en Enseñanza Superior) U.A.N.L.
Resumo:
Título tomado de la cubierta. - Incluye recomendación bibliográfica para el docente (p. 13).
Resumo:
Los objetivos de la investigación son: a)Diseñar, elaborar y aplicar programas de intervención para cada uno de los tres Ciclos de Educación Primaria. Fundamentalmente en la resolución de problemas aritméticos. b)Conocer las dificultades que presentan los alumnos de Educación Primaria en los procesos de resolución de problemas.c)Diseñar, elaborar y aplicar programas específicos para alumnos con dificultades en elaprendizaje de las Matemáticas.. dieciséis alumnos. En primer lugar se realizó la evaluación del dominio de los Problemas Aritméticos Elementales Verbales de una sola operación el total de los sujetos de la muestra (N= 16). Elinstrumento utilizado fue la forma A de la Batería de PAEVSO. El orden de aplicación de los problemas se hizo totalmente al azar, con las distintas categorías semánticas y tipos de problemas (con números grandes o pequeños) entremezclados. Las sesiones fueron aplicadas de forma colectiva a lo largo de los trimestres Segundo y Tercero del Curso 1999-2000 y en el curso 2000-2001. Cualquier sesión sigue este esquema general de trabajo: a. Introducción por parte del instructor con los componentes manipulativos. b. Explicación de los componentes gráficos y simbólicos. c. Realización por parte de los sujetos de los demás problemas (En las hojas de las lecciones o sesiones de trabajo). Esta tarea es realizada individualmente, en parejas o en pequeños grupos de cuatro/tres alumnos que es como están agrupados en el aula. El trabajo en pequeño grupo o en parejas procede de forma que se consiga el mayor número de interacciones entre los sujetos.d. Corrección de la tarea. Cuando la mayoría del grupo ha terminado el trabajo, se realiza la corrección. Esta suele ser colectiva, siendo guiada por la maestra. Se discuten las soluciones aportadas por los alumnos, se crea conflicto cognitivo en el caso de soluciones divergentes entre el alumnado. Se hace especial hincapié en la comprobación de la solución volviendo a leerse la pregunta del problema y comprobando si la solución aportada se corresponde con lo pedido. Se ha tenido especial cuidado en el tratamiento los errores cometidos por los alumnos, cuidando de considerarlos como algo natural en el proceso de enseñanza-aprendizaje.En la evaluación final postest se ha aplicado la forma B paralela de la Batería de Problemas Aritméticos Verbales (Junio de 2001) en las mismas condiciones que en el Pretest. Los instrumentos utilizados son:Baterías de Problemas Aritméticos Elementales Verbales (PAEVSO). Formas A y B,(Aguilar, 1996). (2) Programa Instruccional en Resolución de Problemas Aritméticos Elementales Verbales de una Sola Operación que consta de 25 sesiones.. Los resultados son: se ha podido conocer que la aplicación del Programa Instruccional en Resolución de Problemas Aritméticos Elementales Verbales de una Sola Operación a un grupo de alumnos muestra resultados sensiblemente superiores en las puntuaciones finales, respecto a las iniciales en las diversas categorías semánticas de problemas.Y en el postest (segunda aplicación) en el grupo considerado en este estudio Comparación Pre-postest de los resultados en Problemas de Estructura Aditiva para el grupo entrenado. La probabilidad que se ofrece es para el estadístico 't de Student'.En los problemas de Combinación, los alumnos han mejorado significativamente en los dos problemas de Combinación 2, el planteado con números grandes y el enunciado con números pequeños (p0.022** y p0.020*) que es un problema muy difícil. El grupo también mejora significativamente en tres de los tipos de problemas de la categoría de Cambio (CA3, t.
Resumo:
Cuando se habla de matemática y realidad, frecuentemente se asocia con una matemática centrada en hechos y situaciones de la vida diaria. Dicha interpretación nos dirige a una determinada concepción que, aunque tiene como referente la realidad o aspectos de ésta, no siempre la forma de integrar esta realidad en la escuela o el aula resulta ser la correcta. La escuela tiene la ineludible obligación de procurar formar personas felices, y por ello debe procurar que las personas logren integrarse y conozcan su realidad y entorno
Resumo:
Los objetivos básicos del presente trabajo han sido: -Conocer el Diseño Curricular Base de Educación Primaria de Canarias en las áreas de Lengua y Matemáticas. -Adecuar los objetivos de dichas áreas a los alumnos con necesidades educativas especiales secuenciándolos y sistematizándolos. -Llevar a la práctica y difundir en los centros, la información y documentación elaborada. Participan 10 centros de EGB, de la zona de Jinámar, Tafira y Marzagán, con la participación de profesores de Educación especial y servicios recurrentes tales como logopedas itinerantes, Educación Compensatoria y Stoep, Servicio de orientación. Se llevó a cabo una metodología participativa y técnicas dinamizadoras de grupo. Valoración general: el tema de trabajo ha resultado muy amplio, razón por la que no se pudo terminar el proyecto. Se quiere continuar en él para el curso siguiente con la intención de finalizarlo, puesto que las dos áreas curriculares resultaron inabarcables para los componentes del grupo durante el presente curso.
Resumo:
Se trata de apoyar el desarrollo curricular de las matemáticas con la informática, es decir introducir las nuevas metodologías. Participan 7 profesores/as de dos centros de bachillerato de la isla de Lanzarote. Objetivos: Elaborar diversos cuadernillos didácticos, sobre temas concretos, que sirvan de guía práctica sobre el ordenador, para la mejor comprensión y profundización de un tema del actual currículum de matemáticas. En cuanto a los alumnos: -Introducir dentro del currículum de matemáticas, la informática como herramienta de apoyo al proceso de enseñanza-aprendizaje dentro del desarrollo curricular de matemáticas, a niveles de educación primaria, E.S.O. y bachillerato. -Familiarizar al alumno con el mundo de la informática y ordenadores. Desarrollar en el alumno la capacidad de razonamiento lógico, en orden a la adquisición de una mayor madurez y capacidad. El método utilizado con los alumnos estará basado en el aprendizaje por descubrimiento. La evaluación será continua, en base a la observación y preguntas del profesor, las cuestiones a responder en los cuadernillos y los resultados de las pruebas generales del curso. Los cuadernillos elaborados por el grupo, abarcan los siguientes temas: La Recta y su pendiente; Prioridad de operaciones; polinomio de Taylor y Estadística I y Estadística II. Se utilizaron los siguientes programas informáticos: Sigma, Gráficos, Primer y Derive que se encuentran en el disquete adjunto al proyecto. Los objetivos propuestos se han conseguido plenamente y se valora la actividad del grupo como muy fructífera..
Resumo:
Resumen de la revista en catalán
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicación. Este artículo forma parte del dossier 'La enseñanza de las matemáticas escolares: problemas y perspectivas'