991 resultados para ION-IMPLANTED SILICON
Resumo:
The hydrogen-implanted Si substrate has been used for the fabrication of the "compliant substrate", which can accommodate the mismatch strain during the heteroepitaxy. The compliance of the substrate can be modulated by the energy and dose of implanted hydrogen. In addition, the defects caused by implantation act as the gettering center for the internal gettering of the harmful metallic impurities. Compared with SiC films growth on substrate without implantation. all the measurements indicated that the mismatch strains in the SiC films grown on this substrate have been released and the crystalline qualities have been improved. It is a practical technique used for the compliant substrate fabrication and compatible with the semiconductor industry. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The magnetic semiconductor GdxSi1-x was prepared by low-energy dual ion-beam epitaxy. GdxSi1-x shows excellent magnetic properties at room temperature. A high magnetic moment of 10 mu(B) per Gd atom is observed. The high atomic magnetic moment is interpreted as being a result of the RKKY mechanism. The indirect exchange interaction between ions is strong at large distances due to the low state density of the carriers in the magnetic semiconductor.
Resumo:
The magnetic/nonmagnetic p-n junction was prepared by implanting gadolinium into the n-type silicon with low-energy dual-ion-beam epitaxy technology. The magnetic layer GdxSi1-x shows excellent magnetic properties at room temperature. High magnetic moment 10mu(B) per Gd atom is observed, which is interpreted by RKKY mechanism. Magnetic/nonmagnetic p-n junctions show rectifying behaviour, but no magnetoresistance is observed.
Resumo:
An investigation on the correlation between amorphous Si (a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H
Resumo:
The (Ga,Mn,N) samples were grown by the implantation of low-energy Mn ions into GaN/Al2O3 substrate at different elevated substrate temperatures with mass-analyzed low-energy dual ion beam deposition system. Auger electron spectroscopy depth profile of samples grown at different substrate temperatures indicates that the Mn ions reach deeper in samples with higher substrate temperatures. Clear X-ray diffraction peak from (Ga,Mn)N is observed in samples grown at the higher substrate temperature. It indicates that under optimized substrate temperature and annealing conditions the solid solution (Ga,Mn)N phase in samples was formed with the same lattice structure as GaN and different lattice constant. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.
Resumo:
Carbon films with an open-ended structure were obtained by mass-selected ion-beam deposition technique at 800degreesC. Raman spectra show that these films are mainly sp(2)-bonded. In our case, threshold ion energy of 140 eV was found for the formation of such surface morphology. High deposition temperature and ion-beam current density are also responsible for the growth of this structure. Additionally, the growth mechanism of the carbon films is discussed in this article. It was found that the ions sputtered pits on the substrate in the initial stage play a key role in the tubular surface morphology. (C) 2002 American Vacuum Society.
Resumo:
A novel pulsed rapid thermal processing (PRTP) method has been used for realizing solid-phese crystallization of amorphous silicon films prepared by plasma-enhanced chemical vapour deposit ion. The microstructure and surface morphology of the crystallized films were investigated using x-ray diffraction and atomic Force microscopy. The results indicate that PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural quality, such as large grain size, small lattice microstrain and smooth surface morphology on low-cost glass substrates.
Resumo:
The temperature dependence of photoluminescence (PL) from a-C:H film deposited by CH3+ ion beam has been performed and an anomalous behavior has been reported. A transition temperature at which the PL intensity, peak position and full width at the half maximum change sharply was observed. It is proposed that different structure units. at least three, are responsible for such behavior. Above the transition point. increasing temperature will lead to the dominance of non-radiative recombination process, which quenches the PL overall and preferentially the red part, Possible emission mechanisms have been discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
CeO2 thin film was fabricated by dual ion beam epitaxial technique. The phenomenon of PL violet shift at room temperature was observed, and the distance of shift was about 65 nm. After the analysis of crystal structure and valence in the compound were carried out by XRD and XPS technique, it was concluded that the PL shift was related with valence of cerium ion in the oxides. When the valence of cerium ion varied front tetravalence to trivalence, the PL peak position would move from blue region to violet region and the phenomenon of "violet shift" was observed.
Resumo:
The (Ga,Mn,As) compounds were obtained by the implantation of Mn ions into semi-insulating GaAs substrate with mass-analyzed low energy dual ion beam deposition technique. Auger electron spectroscopy depth profile of a typical sample grown at the substrate temperature of 250degreesC showed that the Mn ions were successfully implanted into GaAs substrate with the implantation depth of 160 nm. X-ray diffraction was employed for the structural analyses of all samples. The experimental results were greatly affected by the substrate temperature. Ga5.2Mn was obtained in the sample grown at the substrate temperature of 250degreesC. Ga5.2Mn, Ga5Mn8 and Mn3Ga were obtained in the sample grown at the substrate temperature of 400degreesC. However, there is no new phase in the sample grown at the substrate temperature of 200degreesC. The sample grown at 400degreesC was annealed at 840degreesC. In this annealed sample Mn3Ga disappeared, Ga5Mn8 tended to disappear,Ga5.2Mn crystallized better and a new phase of Mn2As was generated. (C) 2002 Elsevier Science B,V. All rights reserved.
Resumo:
The evolution of carbonization process on Si as a function of ion dose has been carried out by mass-selected ion-beam deposition technique. 3C-SiC layer has been obtained at low ion dose, which has been observed by reflection high energy electron diffraction and X-ray photoelectron spectroscopy (XPS). The chemical states of Si and carbon have also been examined as a function of ion dose by XPS. Carbon enrichment was found regardless of the used ion dose here, which may be due to the high deposition rate. The formation mechanism of SiC has also been discussed based on the subplantation process. The work will also provide further understanding of the ion-bombardment effect. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Carbon films were deposited by mass-selected ion beam technique with ion energies 50-200eV at a substrate temperature from room temperature to 80 degreesC,. For the energies used, smooth diamond-like carbon films were deposited at room temperature. When the substrate temperature was 600 degreesC,rough graphitic films were produced. But highly oriented carbon tubes were observed when the energies were larger than 140eV at 800 degreesC. They were perpendicular to the surface and parallel to each other. preferred orientation of graphite basic plane was observed by high-resolution electron microscopy. Shallow ion implantation and stress are responsible for this orientation.
Resumo:
A thermodynamic model of hydrogen-induced silicon surface layer splitting with the help of a bonded silicon wafer is proposed in this article. Wafer splitting is the result of lateral growth of hydrogen blisters in the entire hydrogen-implanted region during annealing. The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion. The hydrogen blister radius was studied as a function of annealing time, annealing temperature, and implantation dose. The critical radius was obtained according to the Griffith energy condition. The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters. (C) 2001 American Institute of Physics.
Resumo:
Eu ions doped SiO2 thin films, SiO2( Eu), were prepared by co-sputtering of SiO2 and Eu2O3 and Eu ion implantation into thermally grown SiO2 films. The Eu-L-3-edge X-ray absorption near edge structure (XANES) spectra of SiO2(Eu) films show a doublet absorption peak structure with energy difference of 7 eV, which indicates the conversion of Eu3+ to Eu2+ at high annealing temperature in N-2. The strong blue luminescence of SiO2(Eu) films prepared by ions implantation after films annealed above 1100 degreesC confirms the above argument.