999 resultados para GAAS-ALGAAS HETEROSTRUCTURES
Resumo:
通过对GaAs/AlGaAs异质结电荷注入晶体管结构和工艺的探索研究,以及对器件工作特性的测量分析,在理论上给出了器件过程的物理机制,并对器件结果提出了进一步的改进措施。
Resumo:
利用分子束外延(MBE)方法研制出了高质量的InGaAs/GaAs/AlGaAs应变量子阱激光器外延材料,其最低的阈值电流密度可达到140/cm~2,激发波长在980nm左右.通过脊型波导结构的制备,获得了高性能的适合于掺铒光纤放大器用的980nm量子阱激光器泵浦源,其典型的阈值电流和外微分量子效率分别为15mA和0.8mW/mA,基横模的输出功率大于80mW,器件在50℃,80mW的恒功率老化实验表明,器件具有较好的可靠性.通过与掺铒光纤的耦合,其组合件出纤功率可达60mW以上.
Resumo:
对GaAs/AlGaAs量子阱结构激光器中重要的结构参数与远场垂直发散角的关系作了系统的理论计算与分析,提出了实现20°~30°垂直发散角的有效途径,并同时研究了对激光器的光功率限制因子、阈值电流密度等重要参数的影响.
Resumo:
介绍了MOCVD生长的高质量GaAs和AlAs材料以及(Al)GaAs/AlGaAs分别限制单量子阱激光器.GaAs材料的77K迁移率为122.700cm~2/(V·s),GaAs/AlAs具有均匀陡变的界面.激光器的最大光输出功率为4W,平均光功率密度达4MW/cm~2,斜率效率为1.2W/A,在1W恒功老化4000小时电流增加小于10%,预计寿命可超过两万小时.
Resumo:
计算了不同温度下GaAs/AlGaAs量子阱材料光增益与载流子密度的关系。根据B-D条件:ΔF>hγ≥E_g+E_(c1)+E_(v1),得到了ΔF、峰值增益光子能量和E_g+E_(v1)与载流子密度的关系,并得到了不同增益的激光器阈值电流温度关系。计算结果解释了实验出现的阈值电流温度的反常特性和波长开关现象,并且与器件温度特性符合。
Resumo:
研究了量子阱材料光反射光谱的电调制机理, 根据斯塔克效应, 对量子阱中非激子的带间跃迁和激子跃迁两种情况, 分析了电场引起的介电函数的改变和相应的光反射调制光谱线形, 对GaAs/AlGaAs量子阱所得光反射光谱的实验结果与理论分析基本符合。图4参8
Resumo:
The investigations on GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays for optoelectronic smart pixels are reported. The hybrid integration of GaAs/AlGaAs multiple quantum well devices flip-chip bonding directly over 1 mu m silicon CMOS circuits are demonstrated. The GaAs/AlGaAs multiple quantum well devices are designed for 850nm operation. The measurement results under applied biases show the good optoelectronic characteristics of elements in SEED arrays. The 4x4 optoelectronic crossbar structure consisting of hybrid CMOS-SEED smart pixels have been designed, which could be potentially used in optical interconnects for multiple processors.
Resumo:
Hybrid integration of GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays are demonstrated flip-chip bonded directly onto 1 mu m silicon CMOS circuits. The GaAs/AlGaAs MQW devices are designed for 850 nm operation. Some devices are used as input light detectors and others serve as output light modulators. The measurement results under applied biases show good optoelectronic characteristics of elements in SEED arrays. Nearly the same reflection spectrum is obtained for the different devices at an array and the contrast ratio is more than 1.2:1 after flip-chip bonding and packaging. The transimpedance receiver-transmitter circuit can be operated at a frequency of 300 MHz.
Resumo:
[ES] Los transistores más rápidos se consiguen gracias al crecimiento de diferentes semiconductores apilados. Entre los semiconductores es posible confinar una elevada concentración de electrones de alta movilidad, dando lugar a transistores con gran velocidad de respuesta. Cuando se emplea el sistema AlGaN/GaN, los enlaces interatómicos poseen un elevado carácter iónico. Estos iones generan intensos campos eléctricos internos, que inducen entre el AlGaN y el GaN una concentración de electrones de 1013 cm-2, un orden de magnitud superior a la alcanzada con otras estructuras típicas (AlGaAs/GaAs, AlGaAs/InGaAs/GaAs, GaInP/InGaAs/GaAs, etc.). En este artículo se expone un análisis de los aspectos fundamentales relacionados con la distribución de los electrones bajo la puerta de los transistores basados en nitruros.
Resumo:
The temperature and power dependence of Fermi-edge singularity (FES) in high-density two-dimensional electron gas, specific to pseudomorphic AlxGa1-xAs/InGa1-yAs/GaAs heterostructures is studied by photoluminescence (PL). In all these structures, there are two prominent transitions E-11 and E-21 considered to be the result of electron-hole recombination from first and second electron sub-bands with that of first heavy-hole sub-band. FES is observed approximately 5-10 meV below the E-21 transition. At 4.2 K, FES appears as a lower energy shoulder to the E-21 transition. The PL intensity of all the three transitions E-11, FES and E-21 grows linearly with excitation power. However, we observe anomalous behavior of FES with temperature. While PL intensity of E-11 and E-21 decrease with increasing temperature, FES transition becomes stronger initially and then quenches-off slowly (till 40K). Though it appears as a distinct peak at about 20 K, its maximum is around 7 - 13 K.
Resumo:
The temperature and power dependence of Fermi-edge singularity (FES) in high-density two-dimensional electron gas, specific to pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs heterostructures is studied by photoluminescence (PL). In all these structures, there are two prominent transitions E11 and E21 considered to be the result of electron-hole recombination from first and second electron sub-bands with that of first heavy-hole sub-band. FES is observed approximately 5 -10 meV below the E21 transition. At 4.2 K, FES appears as a lower energy shoulder to the E21 transition. The PL intensity of all the three transitions E11, FES and E21 grows linearly with excitation power. However, we observe anomalous behavior of FES with temperature. While PL intensity of E11 and E21 decrease with increasing temperature, FES transition becomes stronger initially and then quenches-off slowly (till 40K). Though it appears as a distinct peak at about 20 K, its maximum is around 7 - 13 K.
Resumo:
The photoluminescence study of Fermi-edge singularity (FES) in modulation-doped pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs quantum well (QW) heterostructures is presented. In the above QW structures the optical transitions between n = 1 and n = 2 electronic subband to the n = 1 heavy hole subband (E-11 and E-21 transitions, respectively) are observed with FES appearing as a lower energy shoulder to the E-21 transition. The observed FES is attributed to the Fermi wave vector in the first electronic subband under the conditions of population of the second electronic subband. The FES appears at about 10 meV below E-21 transition around 4.2 K. Initially it gets stronger with increasing temperature and becomes a distinct peak at about 20 K. Further increase in temperature quenches FES and reaches the base line at around 40 K.
Resumo:
Low-temperature electroluminescence (EL) is observed in n-type modulation-doped AlGaAs/InGaAs/GaAs quantum well samples by applying a positive voltage between the semitransparent Au gate and alloyed Au–Ge Ohmic contacts made on the top surface of the samples. We attribute impact ionization in the InGaAs QW to the observed EL from the samples. A redshift in the EL spectra is observed with increasing gate bias. The observed redshift in the EL spectra is attributed to the band gap renormalization due to many-body effects and quantum-confined Stark effect.