999 resultados para dielectric thin films
Resumo:
Lead calcium titanate (Pb1-xCaxTiO3 or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thin films of SrBi4Ti4O15 (SBTi), a prototype of the Bi-layered-ferroelectric oxide family, were obtained by a soft chemical method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional method at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films were investigated by Xray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates, the ferroelectric properties of the films were determined. Remanent polarization P-r and a coercive field E-c values of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kv/cm for the film thermally treated in conventional furnace were found. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films are a promising material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thin films of potassium niobate were deposited on (100) Si substrates by the polymeric precursor method (Pechini method). Annealing in static air was performed at 600degrees C for 20 h. The obtained films were characterized by X-ray diffraction and atomic force microscopy (AFM). Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The dielectric constant, dissipation factor and resistance were measured in frequency region from 10 Hz to 10 MHz. At 1 MHz, the dielectric constant was 158 and the dissipation factor was 0.11. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Thin films of lithium niobate were deposited on (100) silicon by the polymeric precursor method (Pechini method). Annealing in static air was performed at 500degreesC for 3 h. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The dielectric constant, dissipation factor and resistance were measured in the frequency region from 10 Hz to 10 MHz. At 1 MHz, the dielectric constant was 46 and the dissipation factor was 0.043. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Ferroelectric SrBi4Ti4O15 thin films were successfully prepared on a Pt(111)/Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. Atomic force microscopy (AFM) analyses showed that the surface of these films is smooth, dense and crack-free with low surface roughness (6.4 nm). At room temperature and at a frequency of 1 MHz, the dielectric constant and the dissipation factor were, respectively, 150 and 0.022. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behaviour. The remanent polarization and coercive field for the films deposited were 5.4 mu C/cm(2) and 8 5 kV/cm, respectively. All the capacitors showed good polarization fatigue characteristics at least up to 1 x 10(10) bipolar pulse cycles indicating that SrBi4Ti4O15 thin films can be a promising material for use in nonvolatile memories. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thin films of lithium niobate were deposited on Pt/Ti/SiO2 (111) substrates by spin coating from the polymeric precursor method (Pechini process). Annealing in static air was performed at 500 degreesC for 3 h. The obtained films were characterized by X-ray diffraction and atomic force microscopy. The dielectric constant, dissipation factor and resistance were measured in frequency region from 10 Hz to 10 MHz and the hysteresis loop was obtained. The influence of number of layers on crystallization, morphology and properties of LiNbO3 thin films is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Pure-and lanthanun doped Bi4Ti3O12 thin films were deposited on Pt/Ti/SiO2/Si substrate using a polymeric precursor solution. Annealing in static air and oxygen atmosphere was performed at 700 degrees C for 2 h. The obtained films were characterized by X-ray diffraction and atomic force microscopy. The dielectric constant and dissipation factor were measured in the frequency region from 1 kHz to 1 MHz. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. Films annealed in static air possess a dielectric constant higher than films annealed in oxygen atmosphere due to differences in the grain size, crystallinity and structural defects. A regularly shaped hystereses loop is observed after annealing in static air. The obtained results suggest that the annealing in oxygen atmosphere can increase the trapped charge and the relaxation phenomenon. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Thin films of lithium niobate were deposited on the Pt/Ti/SiO2 (111) substrates by spin coating from the polymeric precursor method (Pechini process). Annealing in static air and oxygen atmosphere was performed at 500 degreesC for 3 h. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The dielectric constant and dissipation factor were measured in frequency region from 10 Hz to 10 MHz. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The influence of oxygen atmosphere on crystallization, morphology and properties of LiNbO3 thin films is discussed. (C) 2003 Elsevier Ltd. All rights reserved.