863 resultados para Reiter syndrome


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute heart failure (AHF) is a complex syndrome associated with exceptionally high mortality. Still, characteristics and prognostic factors of contemporary AHF patients have been inadequately studied. Kidney function has emerged as a very powerful prognostic risk factor in cardiovascular disease. This is believed to be the consequence of an interaction between the heart and kidneys, also termed the cardiorenal syndrome, the mechanisms of which are not fully understood. Renal insufficiency is common in heart failure and of particular interest for predicting outcome in AHF. Cystatin C (CysC) is a marker of glomerular filtration rate with properties making it a prospective alternative to the currently used measure creatinine for assessment of renal function. The aim of this thesis is to characterize a representative cohort of patients hospitalized for AHF and to identify risk factors for poor outcome in AHF. In particular, the role of CysC as a marker of renal function is evaluated, including examination of the value of CysC as a predictor of mortality in AHF. The FINN-AKVA (Finnish Acute Heart Failure) study is a national prospective multicenter study conducted to investigate the clinical presentation, aetiology and treatment of, as well as concomitant diseases and outcome in, AHF. Patients hospitalized for AHF were enrolled in the FINN-AKVA study, and mortality was followed for 12 months. The mean age of patients with AHF is 75 years and they frequently have both cardiovascular and non-cardiovascular co-morbidities. The mortality after hospitalization for AHF is high, rising to 27% by 12 months. The present study shows that renal dysfunction is very common in AHF. CysC detects impaired renal function in forty percent of patients. Renal function, measured by CysC, is one of the strongest predictors of mortality independently of other prognostic risk markers, such as age, gender, co-morbidities and systolic blood pressure on admission. Moreover, in patients with normal creatinine values, elevated CysC is associated with a marked increase in mortality. Acute kidney injury, defined as an increase in CysC within 48 hours of hospital admission, occurs in a significant proportion of patients and is associated with increased short- and mid-term mortality. The results suggest that CysC can be used for risk stratification in AHF. Markers of inflammation are elevated both in heart failure and in chronic kidney disease, and inflammation is one of the mechanisms thought to mediate heart-kidney interactions in the cardiorenal syndrome. Inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) correlate very differently to markers of cardiac stress and renal function. In particular, TNF-α showed a robust correlation to CysC, but was not associated with levels of NT-proBNP, a marker of hemodynamic cardiac stress. Compared to CysC, the inflammatory markers were not strongly related to mortality in AHF. In conclusion, patients with AHF are elderly with multiple co-morbidities, and renal dysfunction is very common. CysC demonstrates good diagnostic properties both in identifying impaired renal function and acute kidney injury in patients with AHF. CysC, as a measure of renal function, is also a powerful prognostic marker in AHF. CysC shows promise as a marker for assessment of kidney function and risk stratification in patients hospitalized for AHF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative pathway (AP) of complement can be activated on any surface, self or non-self. In atypical hemolytic uremic syndrome (aHUS) the AP regulation on self surfaces is insufficient and leads to complement attack against self-cells resulting usually in end-stage renal disease. Factor H (FH) is one of the key regulators of AP activation on the self surfaces. The domains 19 and 20 (FH19-20) are critical for the ability of FH to discriminate between C3b-opsonized self and non-self surfaces and are a hot-spot for mutations that have been described from aHUS patients. FH19-20 contains binding sites for both the C3d part of C3b and self surface polyanions that are needed for efficient C3b inactivation. To study the dysfunction of FH19-20, crystallographic structures of FH19-20 and FH19-20 in complex with C3d (FH19-20:C3d) were solved and aHUS-associated and structurally interesting point mutations were induced to FH19-20. Functional defects caused by these mutations were studied by analyzing binding of the FH19-20 mutant proteins to C3d, C3b, heparin, and mouse glomerular endothelial cells (mGEnCs). The results revealed two independent binding interfaces between FH19-20 and C3d - the FH19 site and the FH20 site. Superimposition of the FH19-20:C3d complex on the previously published C3b and FH1-4:C3b structures showed that the FH20 site on C3d is partially occluded, but the FH19 site is fully available. Furthermore, binding of FH19-20 via the FH19 site to C3b did not block binding of the functionally important FH1-4 domains and kept the FH20 site free to bind heparin or an additional C3d. Binding assays were used to show that FH20 domain can bind to heparin while FH19-20 is bound to C3b via the FH19 site, and that both the FH19 site and FH20 are necessary for recognition of non-activator surfaces. Simultaneous binding of FH19 site to C3b and FH20 to anionic self structures are the key interactions in self-surface recognition by FH and thereby enhanced avidity of FH explains how AP discriminates between self and non-self. The aHUS-associated mutations on FH19-20 were found to disrupt binding of the FH19 or FH20 site to C3d/C3b, or to disrupt binding of FH20 to heparin or mGEnC. Any of these dysfunctions leads to loss of FH avidity to C3b bearing self surfaces explaining the molecular pathogenesis of the aHUS-cases where mutations are found within FH19-20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sjögren s syndrome (SS) is a strongly female dominant autoimmune disease. SS targets mainly salivary and lacrimal glands and leads to loss of the secreting acinar cells of these glands. Accordingly, secretion of the affected glands is diminished and the main symptoms of SS, dryness of mouth and eyes, follow. In addition to these sicca symptoms, SS patients suffer from severe fatigue and can have various extraglandular symptoms. To date, the etiology of SS still remains unknown. Female dominance and the late onset of the disease simultaneously with remarkable hormonal changes in the body (menopause, adrenopause) encouraged us to hypothesize that sex steroids, especially androgens, are involved in the onset and progression of SS. We confirmed our hypothesis and showed that patients with SS suffer from androgen depletion both systemically and locally in the target tissue of SS, salivary glands. We especially focused on the local androgen environment in salivary glands and demonstrated that healthy salivary glands contain a complete enzymatic machinery for local synthesis of androgens and estrogens from pro-hormone dehydroepiandrosterone (DHEA). However, in SS salivary glands the enzymes catalyzing the local androgen synthesis are defective and, in a subgroup of patients, practically non-functional. Probably due to this local defect in DHEA processing, therapy with DHEA was found unbeneficial for SS patients in the treatment of fatigue. We also studied the effect of the local androgen depletion on salivary glands. We found that in salivary gland cells and healthy labial salivary glands androgens upregulate integrin subunits α1 and α2, which are important for the communication, differentiation and function of the acinar cells. On the contrary, in SS salivary glands DHEA failed to upregulate these signaling molecules, again probably due to defective processing of DHEA into active androgens. Our finding highlights the importance of the local androgen environment and local DHEA processing for the function and welfare of salivary glands. In conclusion, this study showed that patients with SS are androgen depleted both systemically and locally in salivary glands. SS patients also have a defective local sex steroid synthesizing enzymatic machinery further impairing the local androgen depletion. We also showed that the local androgen defect leads to decreased expression of acinar cell specific integrin molecules, which impairs the signaling between the acinar cells and basement membrane and might thus explain the acinar cell loss seen in SS salivary glands. By showing the importance of the local sex steroid imbalance in SS we have clarified some etiopathogenetic mechanisms of SS, which have thus far remained unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irritable bowel syndrome (IBS) is a common multifactorial functional intestinal disorder, the pathogenesis of which is not completely understood. Increasing scientific evidence suggests that microbes are involved in the onset and maintenance of IBS symptoms. The microbiota of the human gastrointestinal (GI) tract constitutes a massive and complex ecosystem consisting mainly of obligate anaerobic microorganisms making the use of culture-based methods demanding and prone to misinterpretation. To overcome these drawbacks, an extensive panel of species- and group-specific assays for an accurate quantification of bacteria from fecal samples with real-time PCR was developed, optimized, and validated. As a result, the target bacteria were detectable at a minimum concentration range of approximately 10 000 bacterial genomes per gram of fecal sample, which corresponds to the sensitivity to detect 0.000001% subpopulations of the total fecal microbiota. The real-time PCR panel covering both commensal and pathogenic microorganisms was assessed to compare the intestinal microbiota of patients suffering from IBS with a healthy control group devoid of GI symptoms. Both the IBS and control groups showed considerable individual variation in gut microbiota composition. Sorting of the IBS patients according to the symptom subtypes (diarrhea, constipation, and alternating predominant type) revealed that lower amounts of Lactobacillus spp. were present in the samples of diarrhea predominant IBS patients, whereas constipation predominant IBS patients carried increased amounts of Veillonella spp. In the screening of intestinal pathogens, 17% of IBS samples tested positive for Staphylococcus aureus, whereas no positive cases were discovered among healthy controls. Furthermore, the methodology was applied to monitor the effects of a multispecies probiotic supplementation on GI microbiota of IBS sufferers. In the placebo-controlled double-blind probiotic intervention trial of IBS patients, each supplemented probiotic strain was detected in fecal samples. Intestinal microbiota remained stable during the trial, except for Bifidobacterium spp., which increased in the placebo group and decreased in the probiotic group. The combination of assays developed and applied in this thesis has an overall coverage of 300-400 known bacterial species, along with the number of yet unknown phylotypes. Hence, it provides good means for studying the intestinal microbiota, irrespective of the intestinal condition and health status. In particular, it allows screening and identification of microbes putatively associated with IBS. The alterations in the gut microbiota discovered here support the hypothesis that microbes are likely to contribute to the pathophysiology of IBS. The central question is whether the microbiota changes described represent the cause for, rather than the effect of, disturbed gut physiology. Therefore, more studies are needed to determine the role and importance of individual microbial species or groups in IBS. In addition, it is essential that the microbial alterations observed in this study will be confirmed using a larger set of IBS samples of different subtypes, preferably from various geographical locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simplified model of human tear fluid (TF) is a three-layered structure composed of a homogenous gel-like layer of hydrated mucins, an aqueous phase, and a lipid-rich outermost layer found in the tear-air interface. It is assumed that amphiphilic phospholipids are found adjacent to the aqueous-mucin layer and externally to this a layer composed of non-polar lipids face the tear-air interface. The lipid layer prevents evaporation of the TF and protects the eye, but excess accumulation of lipids may lead to drying of the corneal epithelium. Thus the lipid layer must be controlled and maintained by some molecular mechanisms. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. The aim of this thesis was to investigate the presence and molecular mechanisms of lipid transfer proteins in human TF. The purpose was also to study the role of these proteins in the development of dry eye syndrome (DES). The presence of TF PLTP and CETP was studied by western blotting and mass spectrometry. The concentration of these proteins was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. To study the molecular mechanisms involved in PLTP mediated lipid transfer Langmuir monolayers and asymmetrical flow field-flow fractionation (AsFlFFF) was used. Ocular tissue samples were stained with monoclonal antibodies against PLTP to study the secretion route of PLTP. Heparin-Sepharose affinity chromatography was used for PLTP pull-down experiments and co-eluted proteins were identified with MALDI-TOF mass spectrometry or Western blot analysis. To study whether PLTP plays any functional role in TF PLTP-deficient mice were examined. The activity of PLTP was also studied in dry eye patients. PLTP is a component of normal human TF, whereas CETP is not. TF PLTP concentration was about 2-fold higher than that in human plasma. Inactivation of PLTP by heat treatment or immunoinhibition abolished the phospholipid transfer activity in tear fluid. PLTP was found to be secreted from lacrimal glands. PLTP seems to be surface active and is capable of accepting lipid molecules without the presence of lipid-protein complexes. The active movement of radioactively labeled lipids and high activity form of PLTP to acceptor particles suggested a shuttle model of PLTP-mediated lipid transfer. In this model, PLTP physically transports lipids between the donor and acceptor. Protein-protein interaction assays revealed ocular mucins as PLTP interaction partners in TF. In mice with a full deficiency of functional PLTP enhanced corneal epithelial damage, increased corneal permeability to carboxyfluorescein, and decreased corneal epithelial occludin expression was demonstrated. Increased tear fluid PLTP activity was observed among human DES patients. These results together suggest a scavenger property of TF PLTP: if the corneal epithelium is contaminated by hydrophobic material, PLTP could remove them and transport them to the superficial layer of the TF or, alternatively, transport them through the naso-lacrimal duct. Thus, PLTP might play an integral role in tear lipid trafficking and in the protection of the corneal epithelium. The increased PLTP activity in human DES patients suggests an ocular surface protective role for this lipid transfer protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital long QT syndrome (LQTS) is a familial disorder characterized by ventricular repolarization that makes carriers vulnerable to malignant ventricular tachycardia and sudden cardiac death. The three main subtypes (LQT1, LQT2 and LQT3) constitute 95% of cases. The disorder is characterized by a prolonged QT interval in electrocardiograms (ECG), but a considerable portion are silent carriers presenting normal (QTc < 440 ms) or borderline (QTc < 470 ms) QT interval. Genetic testing is available only for 60-70% of patients. A number of pharmaceutical compounds also affect ventricular repolarization, causing a clinically similar disorder called acquired long QT syndrome. LQTS carriers - who already have impaired ventricular repolarization - are especially vulnerable. In this thesis, asymptomatic genotyped LQTS mutation carriers with non-diagnostic resting ECG were studied. The body surface potential mapping (BSPM) system was utilized for ECG recording, and signals were analyzed with an automated analysis program. QT interval length, and the end part of the T wave, the Tpe interval, was studied during exercise stress testing and an epinephrine bolus test. In the latter, T wave morphology was also analyzed. The effect of cetirizine was studied in LQTS carriers and also with supra- therapeutic dose in healthy volunteers. At rest, LQTS mutation carriers had a slightly longer heart rate adjusted QTc interval than healthy subjects (427 ± 31 ms and 379 ± 26 ms; p<0.001), but significant overlapping existed. LQT2 mutation carriers had a conspicuously long Tpe-interval (113 ± 24 ms; compared to 79 ± 11 ms in LQT1, 81 ± 17 ms in LQT3 and 78 ± 10 ms in controls; p<0.001). In exercise stress tests, LQT1 mutation carriers exhibit a long QT interval at high heart rates and during recovery, whereas LQT2 mutation carriers have a long Tpe interval at the beginning of exercise and at the end of recovery at low heart rates. LQT3 mutation carriers exhibit prominent shortening of both QT and Tpe intervals during exercise. A small epinephrine bolus revealed disturbed repolarization, especially in LQT2 mutation carriers, who developed prolonged Tpe intervals. A higher epinephrine bolus caused abnormal T waves with a different T wave profile in LQTS mutation carriers compared to healthy controls. These effects were seen in LQT3 as well, a group that may easily escape other provocative tests. In the cetirizine test, the QT and Tpe intervals were not prolonged in LQTS mutation carriers or in healthy controls. Subtype-specific findings in exercise test and epinephrine bolus test help to diagnose silent LQTS mutation carriers and to guide subtype-specific treatments. The Tpe interval, which signifies the repolarization process, seems to be a sensitive marker of disturbed repolarization along with the QT interval, which signifies the end of repolarization. This method may be used in studying compounds that are suspected to affect repolarization. Cetirizine did not adversely alter ventricular repolarization and would not be pro-arrhythmic in common LQT1 and LQT2 subtypes when used at its recommended doses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS An independent, powerful coronary heart disease (CHD) predictor is a low level of high-density lipoprotein cholesterol (HDL-C). Discoidal preβ-HDL particles and large HDL2 particles are the primary cholesterol acceptors in reverse cholesterol transport, a key anti-atherogenic HDL mechanism. The quality of HDL subspecies may provide better markers of HDL functionality than does HDL-C alone. We aimed I) to study whether alterations in the HDL subspecies profile exist in low-HDL-C subjects II) to explore the relationship of any changes in HDL subspecies profile in relation to atherosclerosis and metabolic syndrome; III) to elucidate the impact of genetics and acquired obesity on HDL subspecies distribution. SUBJECTS The study consisted of 3 cohorts: A) Finnish families with low HDL-C and premature CHD (Study I: 67 subjects with familial low HDL-C and 64 controls; Study II: 83 subjects with familial low HDL-C, 65 family members with normal HDL-C, and 133 controls); B) a cohort of 113 low- and 133 high-HDL-C subjects from the Health 2000 Health Examination Survey carried out in Finland (Study III); and C) a Finnish cohort of healthy young adult twins (52 monozygotic and 89 dizygotic pairs) (Study IV). RESULTS AND CONCLUSIONS The subjects with familial low HDL-C had a lower preβ-HDL concentration than did controls, and the low-HDL-C subjects displayed a dramatic reduction (50-70%) in the proportion of large HDL2b particles. The subjects with familial low HDL-C had increased carotid atherosclerosis measured as intima-media-thickness (IMT), and HDL2b particles correlated negatively with IMT. The reduction in both key cholesterol acceptors, preβ-HDL and HDL2 particles, supports the concept of impaired reverse cholesterol transport contributing to the higher CHD risk in low-HDL-C subjects. The family members with normal HDL-C and the young adult twins with acquired obesity showed a reduction in large HDL2 particles and an increase in small HDL3 particles, which may be the first changes leading to the lowering of HDL-C. The low-HDL-C subjects had a higher serum apolipoprotein E (apoE) concentration, which correlated positively with the metabolic syndrome components (waist circumference, TG, and glucose), highlighting the need for a better understanding of apoE metabolism in human atherosclerosis. In the twin study, the increase in small HDL3b particles was associated with obesity independent of genetic effects. The heritability estimate, of 73% for HDL-C and 46 to 63% for HDL subspecies, however, demonstrated a strong genetic influence. These results suggest that the relationship between obesity and lipoproteins depends on different elements in each subject. Finally, instead of merely elevating HDL-C, large HDL2 particles and discoidal preβ-HDL particles may provide beneficial targets for HDL-targeted therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human gastrointestinal (GI) microbiota is a complex ecosystem that lives in symbiosis with its host. The growing awareness of the importance of the microbiota to the host as well as the development of culture-free laboratory techniques and computational methods has enormously expanded our knowledge of this microbial community. Irritable bowel syndrome (IBS) is a common functional bowel disorder affecting up to a fifth of the Western population. To date, IBS diagnosis has been based on GI symptoms and the exclusion of organic diseases. The GI microbiota has been found to be altered in this syndrome and probiotics can alleviate the symptoms, although clear links between the symptoms and the microbiota have not been demonstrated. The aim of the present work was to characterise IBS related alterations in the intestinal microbiota, their relation to IBS symptoms and their responsiveness to probiotic theraphy. In this thesis research, the healthy human microbiota was characterised by cloning and sequencing 16S rRNA genes from a faecal microbial community DNA pool that was first profiled and fractionated according to its guanine and cytosine content (%G+C). The most noticeable finding was that the high G+C Gram-positive bacteria (the phylum Actinobacteria) were more abundant compared to a corresponding library constructed from the unfractionated DNA pool sample. Previous molecular analyses of the gut microbiota have also shown comparatively low amounts of high G+C bacteria. Furthermore, the %G+C profiling approach was applied to a sample constructed of faecal DNA from diarrhea-predominant IBS (IBS-D) subjects. The phylogenetic microbial community comparison performed for healthy and IBS-D sequence libraries revealed that the IBS-D sample was rich in representatives of the phyla Firmicutes and Proteobacteria whereas Actinobacteria and Bacteroidetes were abundant in the healthy subjects. The family Lachnospiraceae within the Firmicutes was especially prevalent in the IBS-D sample. Moreover, associations of the GI microbiota with intestinal symptoms and the quality of life (QOL) were investigated, as well as the effect of probiotics on these factors. The microbial targets that were analysed with the quantitative real-time polymerase chain reaction (qPCR) in this study were phylotypes (species definition according to 16S rRNA gene sequence similarity) previously associated with either health or IBS. With a set of samples, the presence or abundance of a phylotype that had 94% 16S rRNA gene sequence similarity to Ruminococcus torques (R. torques 94%) was shown to be associated with the severity of IBS symptoms. The qPCR analyses for selected phylotypes were also applied to samples from a six-month probiotic intervention with a mixture of Lactobacillus rhamnosus GG, L. rhamnosus Lc705, Propionibacterium freudenreichii ssp. shermanii JS and Bifidobacterium breve Bb99. The intervention had been previously reported to alleviate IBS symptoms, but no associations with the analysed microbiota representatives were shown. However, with the phylotype-specific assays applied here, the abundance of the R. torques 94% -phylotype was shown to be lowered in the probiotic-receiving group during the probiotic supplementation, whereas a Clostridium thermosuccinogenes 85% phylotype, previously associated with a healthy microbiota, was found to be increased compared to the placebo group. To conclude, with the combination of methods applied, higher abundance of Actinobacteria was detected in the healthy gut than found in previous studies, and significant phylum-level microbiota alterations could be shown in IBS-D. Thus, the results of this study provide a detailed overview of the human GI microbiota in healthy subjects and in subjects with IBS. Furthermore, the IBS symptoms were linked to a particular clostridial phylotype, and probiotic supplementation was demonstrated to alter the GI microbiota towards a healthier state with regard to this and an additional bacterial phylotype. For the first time, distinct phylotype-level alterations in the microbiota were linked to IBS symptoms and shown to respond to probiotic therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usher syndrome (USH) is an inherited blindness and deafness disorder with variable vestibular dysfunction. The syndrome is divided into three subtypes according to the progression and severity of clinical symptoms. The gene mutated in Usher syndrome type 3 (USH3), clarin 1 (CLRN1), was identified in Finland in 2001 and two mutations were identified in Finnish patients at that time. Prior to this thesis study, the two CLRN1 gene mutations were the only USH mutations identified in Finnish USH patients. To further clarify the Finnish USH mutation spectrum, all nine USH genes were studied. Seven mutations were identified: one was a previously known mutation in CLRN1, four were novel mutations in myosin VIIa (MYO7A) and two were a novel and a previously known mutation in usherin (USH2A). Another aim of this thesis research was to further study the structure and function of the CLRN1 gene, and to clarify the effects of mutations on protein function. The search for new splice variants resulted in the identification of eight novel splice variants in addition to the three splice variants that were already known prior to this study. Studies of the possible promoter regions for these splice variants showed the most active region included the 1000 bases upstream of the translation start site in the first exon of the main three exon splice variant. The 232 aa CLRN1 protein encoded by the main (three-exon) splice variant was transported to the plasma membrane when expressed in cultured cells. Western blot studies suggested that CLRN1 forms dimers and multimers. The CLRN1 mutant proteins studied were retained in the endoplasmic reticulum (ER) and some of the USH3 mutations caused CLRN1 to be unstable. During this study, two novel CLRN1 sequence alterations were identified and their pathogenicity was studied with cell culture protein expression. Previous studies with mice had shown that Clrn1 is expressed in mouse cochlear hair cells and spiral ganglion cells, but the expression profile in mouse retina remained unknown. The Clrn1 knockout mice display cochlear cell disruption/death, but do not have a retinal phenotype. The zebrafish, Danio rerio, clrn1 was found to be expressed in hair cells associated with hearing and balance. Clrn1 expression was also found in the inner nuclear layer (INL), photoreceptor layer and retinal pigment epithelium layer (RPE) of the zebrafish retina. When Clrn1 production was knocked down with injected morpholino oligonucleotides (MO) targeting Clrn1 translation or correct splicing, the zebrafish larvae showed symptoms similar to USH3 patients. These larvae had balance/hearing problems and reduced response to visual stimuli. The knowledge this thesis research has provided about the mutations in USH genes and the Finnish USH mutation spectrum are important in USH patient diagnostics. The extended information about the structure and function of CLRN1 is a step further in exploring USH3 pathogenesis caused by mutated CLRN1 as well as a step in finding a cure for the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Developmental Origins of Health and Disease Hypothesis proposes that adverse health outcomes in adult life are in part programmed during fetal life and infancy. This means that e.g. restricted nutrition during pregnancy programmes the offspring to store fat more effectively, to develop faster and to reach puberty earlier. These adaptations are beneficial in terms of short term survival. However, in developed countries these adaptations often lead to an increased risk of obesity and metabolic disturbances in later life, due to a mismatch between the prenatal and postnatal environment. This thesis aimed to study the role of early growth in people who are obese as adults, but metabolically healthy as well as in those who are normal in weight but metabolically obese. Other study aims were to assess whether physical activity and cardiorespiratory fitness are programmed early in life. The role of socioeconomic status in the development of obesity from a life course setting was also studied. These studies included 2003 men and women born in Helsinki between 1934 and 1944 with detailed information of their prenatal and childhood growth as well as living conditions. They participated in the detailed clinical examination during the years 2001-2004. A sub-group of the subjects participated in the UKK Institute 2-kilometre walk test. Metabolic syndrome was defined according to the 2005 criteria of the International Diabetes Federation. Among the obese men and women 20 % were metabolically healthy. Those with metabolic syndrome did not differ in birth size compared to the healthy ones, but by two years of age, they were lighter and thinner, and remained so up to 11 years. The period when changes in BMIs were predictive of the metabolic syndrome was from birth to 7 years. Of the normal weight individuals 17 % were metabolically obese. Again, there were no differences in birth size. However, by the age 7 years, those men who later developed metabolic syndrome were thinner. Gains in BMI during the first two years of life were protective of the syndrome. Children who were heavier, and especially taller, were more physically active, exercised with higher intensity and had higher cardiorespiratory fitness in their adult life than those who were shorter and thinner as children. Lower educational attainment and lower adult social class were associated with obesity in both men and women. Childhood social class was inversely associated with body mass index only in men while lower household income was associated with higher BMI in women. These results support the role of early life factors in the development of metabolic syndrome and adult life style. Early detection of risk factors predisposing to these conditions is highly relevant from a public health point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asperger Syndrome (AS) belongs to autism spectrum disorders where both verbal and non-verbal communication difficulties are at the core of the impairment. Social communication requires a complex use of affective, linguistic-cognitive and perceptual processes. In the four studies included in the current thesis, some of the linguistic and perceptual factors that are important for face-to-face communication were studied using behavioural methods. In all four studies the results obtained from individuals with AS were compared with typically developed age, gender and IQ matched controls. First, the language skills of school-aged children were characterized in detail with standardized tests that measured different aspects of receptive and expressive language (Study I). The children with AS were found to be worse than the controls in following complex verbal instructions. Next, the visual perception of facial expressions of emotion with varying degrees of visual detail was examined (Study II). Adults with AS were found to have impaired recognition of facial expressions on the basis of very low spatial frequencies which are important for processing global information. Following that, multisensory perception was investigated by looking at audiovisual speech perception (Studies III and IV). Adults with AS were found to perceive audiovisual speech qualitatively differently from typically developed adults, although both groups were equally accurate in recognizing auditory and visual speech presented alone. Finally, the effect of attention on audiovisual speech perception was studied by registering eye gaze behaviour (Study III) and by studying the voluntary control of visual attention (Study IV). The groups did not differ in eye gaze behaviour or in the voluntary control of visual attention. The results of the study series demonstrate that many factors underpinning face-to-face social communication are atypical in AS. In contrast with previous assumptions about intact language abilities, the current results show that children with AS have difficulties in understanding complex verbal instructions. Furthermore, the study makes clear that deviations in the perception of global features in faces expressing emotions as well as in the multisensory perception of speech are likely to harm face-to-face social communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallophosphoesterase-domain-containing protein 2 (MPPED2) is a highly evolutionarily conserved protein with orthologs found from worms to humans. The human MPPED2 gene is found in a region of chromosome 11 that is deleted in patients with WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, and MPPED2 may function as a tumor suppressor. However, the precise cellular roles of MPPED2 are unknown, and its low phosphodiesterase activity suggests that substrate hydrolysis may not be its prime function. We present here the structures of MPPED2 and two mutants, which show that the poor activity of MPPED2 is not only a consequence of the substitution of an active-site histidine residue by glycine but also due to binding of AMP or GMP to the active site. This feature, enhanced by structural elements of the protein, allows MPPED2 to utilize the conserved phosphoprotein-phosphatase-like fold in a unique manner, ensuring that its enzymatic activity can be combined with a possible role as a scaffolding or adaptor protein. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Familial diarrhea disorders are, in most cases, severe and caused by recessive mutations. We describe the cause of a novel dominant disease in 32 members of a Norwegian family. The affected members have chronic diarrhea that is of early onset, is relatively mild, and is associated with increased susceptibility to inflammatory bowel disease, small-bowel obstruction, and esophagitis. METHODS We used linkage analysis, based on arrays with single-nucleotide polymorphisms, to identify a candidate region on chromosome 12 and then sequenced GUCY2C, encoding guanylate cyclase C (GC-C), an intestinal receptor for bacterial heat-stable enterotoxins. We performed exome sequencing of the entire candidate region from three affected family members, to exclude the possibility that mutations in genes other than GUCY2C could cause or contribute to susceptibility to the disease. We carried out functional studies of mutant GC-C using HEK293T cells. RESULTS We identified a heterozygous missense mutation (c.2519G -> T) in GUCY2C in all affected family members and observed no other rare variants in the exons of genes in the candidate region. Exposure of the mutant receptor to its ligands resulted in markedly increased production of cyclic guanosine monophosphate (cGMP). This may cause hyperactivation of the cystic fibrosis transmembrane regulator (CFTR), leading to increased chloride and water secretion from the enterocytes, and may thus explain the chronic diarrhea in the affected family members. CONCLUSIONS Increased GC-C signaling disturbs normal bowel function and appears to have a proinflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. Further investigation of the relevance of genetic variants affecting the GC-C-CFTR pathway to conditions such as Crohn's disease is warranted. (Funded by Helse Vest Western Norway Regional Health Authority] and the Department of Science and Technology, Government of India.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.