993 resultados para Placer deposits
Resumo:
A ca. 1400-yr record from a raised bog in Isla Grande, Tierra del Fuego, Argentina, registers climate fluctuations, including a Medieval Warm Period, although evidence for the 'Little Ice Age' is less clear. Changes in temperature and/or precipitation were inferred from plant macrofossils, pollen, fungal spores, testate amebae, and peat humification. The chronology was established using a C-14 wiggle-matching technique that provides improved age control for at least part of the record compared to other sites. These new data are presented and compared with other lines of evidence from the Southern and Northern Hemispheres. A period of low local water tables occurred in the bog between A.D. 960-1020, which may correspond to the Medieval Warm Period date range of A.D. 950-1045 generated from Northern Hemisphere tree-ring data. A period of cooler and/or wetter conditions was detected between ca. A.D. 1030 and I 100 and a later period of cooler/wetter conditions estimated at ca. cal A.D. 1800-1930, which may correspond to a cooling episode inferred from Law Dome, Antarctica. (C) 2004 University of Washington. All rights reserved.
Resumo:
Closely spaced sequences of accelerator mass spectrometer (AMS) C-14 dates of peat deposits display century-scale wiggles which can be fitted to the radiocarbon calibration curve. By wiggle-matching such sequences, high-precision calendar age chronologies can be generated which show that changes in mire surface wetness during the Bronze Age/Iron Age transition (c. 850 cal. BC) and the 'Little Ice Age' (Wolf, Sporer, Maunder and Dalton Minima) occurred during periods of suddenly increasing atmospheric concentration of C-14. Replicate evidence from peat-based proxy climate indicators in northwest Europe suggest these changes in climate may have been driven by temporary declines of solar activity. Carbon-accumulation rates of two raised peat bogs in the UK and Denmark record low values during the 'Little Ice Age' which reflects reduced primary productivity of the peat-forming vegetation during these periods of climatic deterioration.
Resumo:
Neptune’s Cave in the Velfjord–Tosenfjord area of Nordland, Norway is described, together with its various organic deposits. Samples of attached barnacles, loose marine molluscs, animal bones and organic sediments were dated, with radiocarbon ages of 9840+/-90 and 9570+/-80 yr BP being derived for the barnacles and molluscs, based on the superseded but locally used marine reservoir age of 440 years. A growth temperature of c. 7.51C in undiluted seawater is deduced from the d13C and d18O values of both types of marine shell, which is consistent with their early Holocene age. From the dates, and an assessment of local Holocene uplift and Weichselian deglaciation, a scenario is constructed that could explain the situation and condition of the various deposits. The analysis uses assumed local isobases and sea-level curve to give results: that are consistent with previous data, that equate the demise of the barnacles to the collapse of a tidewater glacier in Tosenfjord, and that constrain the minimum extent of local Holocene uplift. An elk fell into the cave in the mid-Holocene at 510070 yr BP, after which a much later single ‘bog-burst’ event at 178070 yr BP could explain the transport of the various loose deposits further into the cave.
Resumo:
In this study, palaeoenvironmental changes recorded in the top metre of a peat profile (Misten bog, East Belgium) were investigated using a multiproxy approach. Proxies include bulk density, Ti and Si content, pollen, macrofossils, d13C on specific Sphagnum stems, and d13C–d18O on Sphagnum leaves. A high-resolution chronology was generated using 210Pb measurements and 22 14C AMS dates on carefully selected Sphagnum macrofossils. d13C only records large change in mire surface wetness. This is partly due to the fact that the core was taken from the edge of a hummock, which may make it difficult to track small isotopic changes. The d13C signal seems to be dependent upon the Sphagnum species composition. For example, a change between Sphagnum section Cuspidata towards Sphagnum imbricatum causes a significant drop in the d13C values. On the whole, the C and O isotopes record two shallow pool phases during the 8th–9th and the 13th centuries. Pollen and atmospheric soil dust (ASD) fluxes records increased human occupation in the area. There may be some climatic signals in the ASD flux, but they are difficult to decipher from the increasing human impact (land clearance, agriculture) during the last millennium. The variations in the proxies are not always synchronous, suggesting different triggering factors (temperature, wetness, windiness) for each proxy. This study also emphasizes that, compared to studies dealing with pollution using geochemical proxies, palaeoclimatic inferences from peat bogs need as many proxies as possible, together with highly accurate and precise age-models, in order to better understand climate variability and their consequences during the Holocene.
Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska
Resumo:
We present stratigraphic observations from three sites in eastern Beringia - Ch'ijee's Bluff in northern Yukon and nearby exposures on the Old Crow River, the Palisades on the Yukon River in Alaska, and placer mining exposures at Thistle Creek in west-central Yukon - which provide insight into the response of permafrost to regional warming during the last interglaciation. Chronology is based on the presence of Old Crow tephra, an important regional stratigraphic marker that dates to late Marine Isotope Stage 6, supplemented by paleoecology and non-finite C ages on wood-rich organic silts. Old Crow tephra overlies several relict ice wedges at the Palisades and Thistle Creek, indicating that permafrost at these sites did not thaw completely during the last interglaciation. Prominent deposits of last interglacial wood-rich organic silt are present at multiple sites in eastern Beringia, and probably represent accumulations of reworked forest vegetation due to thaw slumping or deposition into thermokarst ponds or depressions. Consistent stratigraphic relations between these deposits, Old Crow tephra, and ice wedge pseudomorphs at our three study sites, and at least six other sites in eastern Beringia, suggest that thaw of shallow permafrost was widespread during the last interglaciation. Limited stratigraphic evidence suggests that thaw was probably on the order of meters, rather than 10s of meters. The ubiquity of shallow permafrost degradation during the last interglaciation suggests that current ground warming may foreshadow widespread near-surface thaw under even modest future warming scenarios. However, the persistence of relict pre-last interglacial ice wedges highlights the potential for the regional antiquity of discontinuous permafrost, and provides compelling field evidence for the long-term resilience of deep permafrost during sustained periods of warmer-than-present climate.