200 resultados para Fysik
Resumo:
Aerosol particles play an important role in the Earth s atmosphere and in the climate system: they scatter and absorb solar radiation, facilitate chemical processes, and serve as seeds for cloud formation. Secondary new particle formation (NPF) is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapors participating in this process are, however, not truly understood. In order to fully explain atmospheric NPF and subsequent growth, we need to measure directly the very initial steps of the formation processes. This thesis investigates the possibility to study atmospheric particle formation using a recently developed Neutral cluster and Air Ion Spectrometer (NAIS). First, the NAIS was calibrated and intercompared, and found to be in good agreement with the reference instruments both in the laboratory and in the field. It was concluded that NAIS can be reliably used to measure small atmospheric ions and particles directly at the sizes where NPF begins. Second, several NAIS systems were deployed simultaneously at 12 European measurement sites to quantify the spatial and temporal distribution of particle formation events. The sites represented a variety of geographical and atmospheric conditions. The NPF events were detected using NAIS systems at all of the sites during the year-long measurement period. Various particle formation characteristics, such as formation and growth rates, were used as indicators of the relevant processes and participating compounds in the initial formation. In a case of parallel ion and neutral cluster measurements, we also estimated the relative contribution of ion-induced and neutral nucleation to the total particle formation. At most sites, the particle growth rate increased with the increasing particle size indicating that different condensing vapors are participating in the growth of different-sized particles. The results suggest that, in addition to sulfuric acid, organic vapors contribute to the initial steps of NPF and to the subsequent growth, not just later steps of the particle growth. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. The results infer that the ion-induced nucleation has a minor contribution to particle formation in the boundary layer in most of the environments. These results give tools to better quantify the aerosol source provided by secondary NPF in various environments. The particle formation characteristics determined in this thesis can be used in global models to assess NPF s climatic effects.
Resumo:
Mesoscale weather phenomena, such as the sea breeze circulation or lake effect snow bands, are typically too large to be observed at one point, yet too small to be caught in a traditional network of weather stations. Hence, the weather radar is one of the best tools for observing, analyzing and understanding their behavior and development. A weather radar network is a complex system, which has many structural and technical features to be tuned, from the location of each radar to the number of pulses averaged in the signal processing. These design parameters have no universal optimal values, but their selection depends on the nature of the weather phenomena to be monitored as well as on the applications for which the data will be used. The priorities and critical values are different for forest fire forecasting, aviation weather service or the planning of snow ploughing, to name a few radar-based applications. The main objective of the work performed within this thesis has been to combine knowledge of technical properties of the radar systems and our understanding of weather conditions in order to produce better applications able to efficiently support decision making in service duties for modern society related to weather and safety in northern conditions. When a new application is developed, it must be tested against ground truth . Two new verification approaches for radar-based hail estimates are introduced in this thesis. For mesoscale applications, finding the representative reference can be challenging since these phenomena are by definition difficult to catch with surface observations. Hence, almost any valuable information, which can be distilled from unconventional data sources such as newspapers and holiday shots is welcome. However, as important as getting data is to obtain estimates of data quality, and to judge to what extent the two disparate information sources can be compared. The presented new applications do not rely on radar data alone, but ingest information from auxiliary sources such as temperature fields. The author concludes that in the future the radar will continue to be a key source of data and information especially when used together in an effective way with other meteorological data.
Resumo:
Aerosol particles deteriorate air quality, atmospheric visibility and our health. They affect the Earth s climate by absorbing and scattering sunlight, forming clouds, and also via several feed-back mechanisms. The net effect on the radiative balance is negative, i.e. cooling, which means that particles counteract the effect of greenhouse gases. However, particles are one of the poorly known pieces in the climate puzzle. Some of the airborne particles are natural, some anthropogenic; some enter the atmosphere in particle form, while others form by gas-to-particle conversion. Unless the sources and dynamical processes shaping the particle population are quantified, they cannot be incorporated into climate models. The molecular level understanding of new particle formation is still inadequate, mainly due to the lack of suitable measurement techniques to detect the smallest particles and their precursors. This thesis has contributed to our ability to measure newly formed particles. Three new condensation particle counter applications for measuring the concentration of nano-particles were developed. The suitability of the methods for detecting both charged and electrically neutral particles and molecular clusters as small as 1 nm in diameter was thoroughly tested both in laboratory and field conditions. It was shown that condensation particle counting has reached the size scale of individual molecules, and besides measuring the concentration they can be used for getting size information. In addition to atmospheric research, the particle counters could have various applications in other fields, especially in nanotechnology. Using the new instruments, the first continuous time series of neutral sub-3 nm particle concentrations were measured at two field sites, which represent two different kinds of environments: the boreal forest and the Atlantic coastline, both of which are known to be hot-spots for new particle formation. The contribution of ions to the total concentrations in this size range was estimated, and it could be concluded that the fraction of ions was usually minor, especially in boreal forest conditions. Since the ionization rate is connected to the amount of cosmic rays entering the atmosphere, the relative contribution of neutral to charged nucleation mechanisms extends beyond academic interest, and links the research directly to current climate debate.
Resumo:
Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.
Resumo:
Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution. They are widely used in many high-energy physics experiments. Modern high energy physics experiments impose harsh operation conditions on the detectors, e.g., of LHC experiments. The high radiation doses cause the detectors to eventually fail as a result of excessive radiation damage. This has led to a need to study radiation tolerance using various techniques. At the same time, a need to operate sensors approaching the end their lifetimes has arisen. The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal, measurement apparatuses are built. The devices are then used to measure the properties of irradiated detectors. The measurement data are analyzed, and conclusions are drawn. Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle accelerator and one telescope measuring the tracks of cosmic particles. The telescopes comprise layers of reference detectors providing the reference track, slots for the devices under test, the supporting mechanics, electronics, software, and the trigger system. All three devices work. The differences between these devices are discussed. The reconstruction of the reference tracks and analysis of the device under test are presented. Traditionally, silicon detectors have produced a very clear response to the particles being measured. In the case of detectors nearing the end of their lifefimes, this is no longer true. A new method benefitting from the reference tracks to form clusters is presented. The method provides less biased results compared to the traditional analysis, especially when studying the response of heavily irradiated detectors. Means to avoid false results in demonstrating the particle-finding capabilities of a detector are also discussed. The devices and analysis methods are primarily used to study strip detectors made of Magnetic Czochralski silicon. The detectors studied were irradiated to various fluences prior to measurement. The results show that Magnetic Czochralski silicon has a good radiation tolerance and is suitable for future high-energy physics experiments.
Resumo:
Molecular machinery on the micro-scale, believed to be the fundamental building blocks of life, involve forces of 1-100 pN and movements of nanometers to micrometers. Micromechanical single-molecule experiments seek to understand the physics of nucleic acids, molecular motors, and other biological systems through direct measurement of forces and displacements. Optical tweezers are a popular choice among several complementary techniques for sensitive force-spectroscopy in the field of single molecule biology. The main objective of this thesis was to design and construct an optical tweezers instrument capable of investigating the physics of molecular motors and mechanisms of protein/nucleic-acid interactions on the single-molecule level. A double-trap optical tweezers instrument incorporating acousto-optic trap-steering, two independent detection channels, and a real-time digital controller was built. A numerical simulation and a theoretical study was performed to assess the signal-to-noise ratio in a constant-force molecular motor stepping experiment. Real-time feedback control of optical tweezers was explored in three studies. Position-clamping was implemented and compared to theoretical models using both proportional and predictive control. A force-clamp was implemented and tested with a DNA-tether in presence of the enzyme lambda exonuclease. The results of the study indicate that the presented models describing signal-to-noise ratio in constant-force experiments and feedback control experiments in optical tweezers agree well with experimental data. The effective trap stiffness can be increased by an order of magnitude using the presented position-clamping method. The force-clamp can be used for constant-force experiments, and the results from a proof-of-principle experiment, in which the enzyme lambda exonuclease converts double-stranded DNA to single-stranded DNA, agree with previous research. The main objective of the thesis was thus achieved. The developed instrument and presented results on feedback control serve as a stepping stone for future contributions to the growing field of single molecule biology.
Resumo:
Nanorypään ominaisuuksien ymmärtämisen ja ennustamisen kannalta on keskeistä tuntea tekijät, joiden perusteella rypään tasapainorakenne määräytyy. Nämä tekijät voidaan jakaa energeettisiin, termodynaamisiin ja kineettisiin tekijöihin. Energeettisiin tekijöihin kuuluvat rypään sidosenergia ja elektronirakenne. Termodynaamisia tekijöitä ovat rypään erilaiset entropiatermit. Kineettiset tekijät puolestaan liittyvät rypään muodostumisprosessin kulkuun. Tässä työssä tutkittiin värähtelyentropian vaikutusta vapaiden kuparinanorypäiden tasapainorakenteeseen atomistisilla simulointimenetelmillä 10 - 6525 atomin kokoluokassa 0 K - 600 K lämpötila-alueella. Tarkasteltaviksi valittiin kahdeksan ideaalista rakennetyyppiä: Mackayn ikosaedri, täydellinen oktaedri, katkaistu oktaedri, säännöllinen katkaistu oktaedri, kuboktaedri, säännöllinen dekaedri, Marksin dekaedri ja Inon dekaedri. Näiden lisäksi tarkasteltavina oli kaasukondensaatiosimulaatioilla tuotettuja rypäitä. Tarkasteltaville rypäille laskettiin ominaisvärähtelytaajuuksien tilatiheysfunktiot harmoniseen approksimaatioon perustuen. Tilatiheysfunktioiden perusteella laskettiin kullekin rypäälle Helmholtzin vapaan energian lämpötilariippuvuus, josta edelleen rypään stabiiliutta kuvaava delta-parametri. Tasapainotilassa olevan rypään potentiaalifunktion anharmonisuus huomioitiin kvasiharmonisen approksimaation avulla. Atomien välistä vuorovaikutusta kuvaamaan käytettiin EAM-potentiaalimallia kuparille. Eri rakennetyyppien välistä kilpailuasemaa verrattiin delta-parametrin avulla. Tulosten perusteella Mackayn ikosaedri on edullisin rakenne alle 2000 atomin kokoluokassa, kun lämpötila on 0 K. Atomimäärän kasvaessa katkaistu oktaedri -rakenteet ottavat edullisimman rakenteen paikan. Lämpötilan noustessa ikosaedrirakenne pysyy edullisimpana yhä suurempiin kokoluokkiin, ja 600 K lämpötilassa se on edullisin rakenne lähes 4000 atomin kokoon saakka. Kaasukondensaatiosimulaatioilla tuotettujen rypäiden delta-parametreja verrattiin ideaalisiin rakennetyyppeihin. Anharmonisten korjausten ei havaittu vaikuttavan tuloksiin tarkasteltavalla koko- ja lämpötila-alueella.
Resumo:
Floating in the air that surrounds us is a number of small particles, invisible to the human eye. The mixture of air and particles, liquid or solid, is called an aerosol. Aerosols have significant effects on air quality, visibility and health, and on the Earth's climate. Their effect on the Earth's climate is the least understood of climatically relevant effects. They can scatter the incoming radiation from the Sun, or they can act as seeds onto which cloud droplets are formed. Aerosol particles are created directly, by human activity or natural reasons such as breaking ocean waves or sandstorms. They can also be created indirectly as vapors or very small particles are emitted into the atmosphere and they combine to form small particles that later grow to reach climatically or health relevant sizes. The mechanisms through which those particles are formed is still under scientific discussion, even though this knowledge is crucial to make air quality or climate predictions, or to understand how aerosols will influence and will be influenced by the climate's feedback loops. One of the proposed mechanisms responsible for new particle formation is ion-induced nucleation. This mechanism is based on the idea that newly formed particles were ultimately formed around an electric charge. The amount of available charges in the atmosphere varies depending on radon concentrations in the soil and in the air, as well as incoming ionizing radiation from outer space. In this thesis, ion-induced nucleation is investigated through long-term measurements in two different environments: in the background site of Hyytiälä and in the urban site that is Helsinki. The main conclusion of this thesis is that ion-induced nucleation generally plays a minor role in new particle formation. The fraction of particles formed varies from day to day and from place to place. The relative importance of ion-induced nucleation, i.e. the fraction of particles formed through ion-induced nucleation, is bigger in cleaner areas where the absolute number of particles formed is smaller. Moreover, ion-induced nucleation contributes to a bigger fraction of particles on warmer days, when the sulfuric acid and water vapor saturation ratios are lower. This analysis will help to understand the feedbacks associated with climate change.
Resumo:
Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.
Resumo:
In this thesis, the possibility of extending the Quantization Condition of Dirac for Magnetic Monopoles to noncommutative space-time is investigated. The three publications that this thesis is based on are all in direct link to this investigation. Noncommutative solitons have been found within certain noncommutative field theories, but it is not known whether they possesses only topological charge or also magnetic charge. This is a consequence of that the noncommutative topological charge need not coincide with the noncommutative magnetic charge, although they are equivalent in the commutative context. The aim of this work is to begin to fill this gap of knowledge. The method of investigation is perturbative and leaves open the question of whether a nonperturbative source for the magnetic monopole can be constructed, although some aspects of such a generalization are indicated. The main result is that while the noncommutative Aharonov-Bohm effect can be formulated in a gauge invariant way, the quantization condition of Dirac is not satisfied in the case of a perturbative source for the point-like magnetic monopole.
Resumo:
Aerosol particles have effect on climate, visibility, air quality and human health. However, the strength of which aerosol particles affect our everyday life is not well described or entirely understood. Therefore, investigations of different processes and phenomena including e.g. primary particle sources, initial steps of secondary particle formation and growth, significance of charged particles in particle formation, as well as redistribution mechanisms in the atmosphere are required. In this work sources, sinks and concentrations of air ions (charged molecules, cluster and particles) were investigated directly by measuring air molecule ionising components (i.e. radon activity concentrations and external radiation dose rates) and charged particle size distributions, as well as based on literature review. The obtained results gave comprehensive and valuable picture of the spatial and temporal variation of the air ion sources, sinks and concentrations to use as input parameters in local and global scale climate models. Newly developed air ion spectrometers (Airel Ltd.) offered a possibility to investigate atmospheric (charged) particle formation and growth at sub-3 nm sizes. Therefore, new visual classification schemes for charged particle formation events were developed, and a newly developed particle growth rate method was tested with over one year dataset. These data analysis methods have been widely utilised by other researchers since introducing them. This thesis resulted interesting characteristics of atmospheric particle formation and growth: e.g. particle growth may sometimes be suppressed before detection limit (~ 3 nm) of traditional aerosol instruments, particle formation may take place during daytime as well as in the evening, growth rates of sub-3 nm particles were quite constant throughout the year while growth rates of larger particles (3-20 nm in diameter) were higher during summer compared to winter. These observations were thought to be a consequence of availability of condensing vapours. The observations of this thesis offered new understanding of the particle formation in the atmosphere. However, the role of ions in particle formation, which is not well understood with current knowledge, requires further research in future.
Resumo:
Inelastic x-ray scattering spectroscopy is a versatile experimental technique for probing the electronic structure of materials. It provides a wealth of information on the sample's atomic-scale structure, but extracting this information from the experimental data can be challenging because there is no direct relation between the structure and the measured spectrum. Theoretical calculations can bridge this gap by explaining the structural origins of the spectral features. Reliable methods for modeling inelastic x-ray scattering require accurate electronic structure calculations. This work presents the development and implementation of new schemes for modeling the inelastic scattering of x-rays from non-periodic systems. The methods are based on density functional theory and are applicable for a wide variety of molecular materials. Applications are presented in this work for amorphous silicon monoxide and several gas phase systems. Valuable new information on their structure and properties could be extracted with the combination of experimental and computational methods.
Resumo:
Tavanomaisten hammasröntgenlaitteiden säteilyannoksia valvotaan postitettavien testipakettien ja paikan päällä tehtävien tarkastusten avulla. Säteilyannoksen valvontaan käytetään termoluminesenssidosimetrejä (Thermoluminescence Dosimetry, TLD). Dosimetreissä on TL-materiaalista valmistettuja loistekiteitä, joihin absorboitunut säteilyenergia vapautuu valona materiaalia lämmitettäessä. Prosessissa vapautuvan valon intensiteetti on suoraan verrannollinen absorboituneeseen säteilyannokseen. TLD:llä mitataan rekisteröityjen intraoraalilaitteiden tuottamaa säteilyannosta potilaan posken kohdalla. Säteilyturvakeskus (STUK) ylläpitää rekisteriä ilmoitusvelvollisuuden alaisista hammasröntgenlaitteista. Nyt hammaslaiterekisteriä ollaan uudistamassa siten, että TLD-mittaustulosten käsittely ja annoslaskenta siirtyvät rekisteristä WinTLD-laskentaohjelmaan, jossa on kaikki tarvittavat parametrit annoksen laskemiseksi. Tässä työssä TLD-mittausjärjestelmän kalibrointituloksia analysoitiin vuosilta 1996-2011 ja määritettiin uudelleen laskennassa käytetty energiakorjauskerroin, joka on osa tulevaa WinTLD-konfigurointia. Mittauksissa tarvittavat standardisäteilylaadut (ISO H-laadut) pystytettiin osana työtä. Henkilödosimetrien suorituskykytestauksessa käytetään ISO N-säteilylaatuja. Mirion Technologies (RADOS) käyttää TLD-systeemiä henkilödosimetriassa, ja hammas-TLD on tämän järjestelmän sovellus potilasdosimetriaan. ISO H-laadut otettiin käyttöön, jotta dosimetrien vastetta voitiin ISO N-laatujen tapaan tutkia jatkuvana fotonienergian funktiona Cs-137 ja Co-60 gammasäteilylaatuihin asti ja koska niillä voitiin jäljitellä todellista kliinistä suodatusta. Energiakorjauskerroin kalibroinnissa käytettävän Co-gammasäteilyn ja intraoraalikuvauksissa käytettävän röntgensäteilyn välillä määritettiin uudelleen. Sen arvoksi (yksikkö mGy/mGy) saatiin ISO N-60-laadulla 0,671 ja ISO H-60-laadulla 0,677, jotka ovat numeerisesti hyvin lähellä aikaisemmin määritettyä kerrointa 0,679. Energiakorjauskertoimen epävarmuudeksi saatiin 3,5 % (2std) ja annosmittauksen epävarmuudeksi 7,8 %. Energiavasteiden perusteella dosimetreissä käytetty materiaali on kahdesta vaihtoehdosta MTS-N (LiF:Mg,Ti) eikä MCP-N (LiF:Mg,Cu,P). TLD-järjestelmää voidaan kehittää ja konfiguroida uusien tulosten perusteella, jolloin otetaan käyttöön muun muassa uudelleenmääritetty energiakorjauskerroin. ISO H-säteilylaadut otettiin 22.3.2011 virallisesti käyttöön STUKissa ja niitä käytetään dosimetritestauksessa tarvittaessa suuria annosnopeuksia ja annoksia.
Resumo:
Earth s ice shelves are mainly located in Antarctica. They cover about 44% of the Antarctic coastline and are a salient feature of the continent. Antarctic ice shelf melting (AISM) removes heat from and inputs freshwater into the adjacent Southern Ocean. Although playing an important role in the global climate, AISM is one of the most important components currently absent in the IPCC climate model. In this study, AISM is introduced into a global sea ice-ocean climate model ORCA2-LIM, following the approach of Beckmann and Goosse (2003; BG03) for the thermodynamic interaction between the ice shelf and ocean. This forms the model ORCA2-LIM-ISP (ISP: ice shelf parameterization), in which not only all the major Antarctic ice shelves but also a number of minor ice shelves are included. Using these two models, ORCA2-LIM and ORCA2-LIM-ISP, the impact of addition of AISM and increasing AISM have been investigated. Using the ORCA2-LIM model, numerical experiments are performed to investigate the sensitivity of the polar sea ice cover and the Antarctic Circumpolar Current (ACC) transport through Drake Passage (DP) to the variations of three sea ice parameters, namely the thickness of newly formed ice in leads (h0), the compressive strength of ice (P*), and the turning angle in the oceanic boundary layer beneath sea ice (θ). It is found that the magnitudes of h0 and P* have little impact on the seasonal sea ice extent, but lead to large changes in the seasonal sea ice volume. The variation in turning angle has little impact on the sea ice extent and volume in the Arctic but tends to reduce them in the Antarctica when ignored. The magnitude of P* has the least impact on the DP transport, while the other two parameters have much larger influences. Numerical results from ORCA2-LIM and ORCA2-LIM-ISP are analyzed to investigate how the inclusion of AISM affects the representation of the Southern Ocean hydrography. Comparisons with data from the World Ocean Circulation Experiment (WOCE) show that the addition of AISM significantly improves the simulated hydrography. It not only warms and freshens the originally too cold and too saline bottom water (AABW), but also warms and enriches the salinity of the originally too cold and too fresh warm deep water (WDW). Addition of AISM also improves the simulated stratification. The close agreement between the simulation with AISM and the observations suggests that the applied parameterization is an adequate way to include the effect of AISM in a global sea ice-ocean climate model. We also investigate the models capability to represent the sea ice-ocean system in the North Atlantic Ocean and the Arctic regions. Our study shows both models (with and without AISM) can successfully reproduce the main features of the sea ice-ocean system. However, both tend to overestimate the ice flux through the Nares Strait, produce a lower temperature and salinity in the Hudson Bay, Baffin Bay and Davis Strait, and miss the deep convection in the Labrador Sea. These deficiencies are mainly attributed to the artificial enlargement of the Nares Strait in the model. In this study, the impact of increasing AISM on the global sea ice-ocean system is thoroughly investigated. This provides a first idea regarding changes induced by increasing AISM. It is shown that the impact of increasing AISM is global and most significant in the Southern Ocean. There, increasing AISM tends to freshen the surface water, to warm the intermediate and deep waters, and to freshen and warm the bottom water. In addition, increasing AISM also leads to changes in the mixed layer depths (MLD) in the deep convection sites in the Southern Ocean, deepening in the Antarctic continental shelf while shoaling in the ACC region. Furthermore, increasing AISM influences the current system in the Southern Ocean. It tends to weaken the ACC, and strengthen the Antarctic coastal current (ACoC) as well as the Weddell Gyre and the Ross Gyre. In addition to the ocean system, increasing AISM also has a notable impact on the Antarctic sea ice cover. Due to the cooling of seawater, sea ice concentration and thickness generally become higher. In austral winter, noticeable increases in sea ice concentration mainly take place near the ice edge. In regards with sea ice thickness, large increases are mainly found along the coast of the Weddell Sea, the Bellingshausen and Amundsen Seas, and the Ross Sea. The overall thickening of sea ice leads to a larger volume of sea ice in Antarctica. In the North Atlantic, increasing AISM leads to remarkable changes in temperature, salinity and density. The water generally becomes warmer, more saline and denser. The most significant warming occurs in the subsurface layer. In contrast, the maximum salinity increase is found at the surface. In addition, the MLD becomes larger along the Greenland-Scotland-Iceland ridge. Global teleconnections due to AISM are studied. The AISM signal is transported with the surface current: the additional freshwater from AISM tends to enhance the northward spreading of the surface water. As a result, more warm and saline water is transported from the tropical region to the North Atlantic Ocean, resulting in warming and salt enrichment there. It would take about 30 40 years to establish a systematic noticeable change in temperature, salinity and MLD in the North Atlantic Ocean according to this study. The changes in hydrography due to increasing AISM are compared with observations. Consistency suggests that increasing AISM is highly likely a major contributor to the recent observed changes in the Southern Ocean. In addition, the AISM might contribute to the salinity contrast between the North Atlantic and North Pacific, which is important for the global thermohaline circulation.
Resumo:
In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.