935 resultados para Donor Lymphocyte Infusions
Resumo:
Using a two-parameter wave function, we calculate variationally the binding energy of an exciton bound to an ionized donor impurity (D+,X) in GaAs-AlxGa1-xAs quantum wells for the values of the well width from 10 to 300 Angstrom, when the dopant is located in the center of the well and at the edge of the well. The theoretical results confirm that the previous experimental speculation proposed by Reynolds tit al. [Phys. Rev. B 40, 6210 (1989)] is the binding energy of D+,X for the dopant at the edge of the well. in addition, we also calculate the center-of-mass wave function of the exciton and the average interparticle distances. The results are discussed in detail.
Resumo:
The binding energy of an exciton bound to an ionized donor impurity (D+,X) located st the center or the edge in GaAs-AlxGa1-xAs quantum wells is calculated variationally for the well width from 10 to 300 Angstrom by using a two-parameter wave function, The theoretical results are discussed and compared with the previous experimental results.
Resumo:
Fe-doped semi-insulating (SI) InP has become semi-conducting (SC) material completely after annealing at 900 V for 10 hours. Defects in the SC and SI InP materials have been studied by deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) respectively. The DLTS only detected Fe acceptor related deep level defect with significant concentration, suggesting the formation of a high concentration of shallow donor in the SC-InP TSC results confirmed the nonexistence of deep level defects in the annealed SI-InP. The results demonstrate a significant influence of the thermally induced defects on the electrical properties of SI-InP. The formation mechanism and the nature of the shallow donor defect have been discussed based on the results.
Resumo:
A high concentration of shallow donor defect is formed in P-diffused ZnO single crystals. X-ray photoelectron spectroscopy analysis indicates that P atom occupy different lattice site at different diffusion temperature. Nature of the donor defect has been discussed.
Resumo:
An extension of Faulkner's method for the energy levels of the shallow donor in silicon and germanium at zero field is made in order to investigate the effects of a magnetic field upon the excited states. The effective-mass Hamiltonian matrix elements of an electron bound to a donor center and subjected to a magnetic field B, which involves both the linear and quadratic terms of magnetic field, are expressed analytically and matrices are solved numerically. The photothermal ionization spectroscopy of phosphorus in ultrapure silicon for magnetic fields parallel to the [1,0,0] and [1,1,1] directions and up to 10 T is explained successfully.
Resumo:
Neutron transmutation doped (NTD) silicon crystals grown in a hydrogen atmosphere have been investigated by infrared absorption spectroscopy at a low temperature (10 K). An effective-mass-like donor state HD0/+ has been found at 110.8 me V below the conduction band bottom after rapid thermal annealing (RTA). The HD0/+ formation mechanism after NTD and RTA is briefly discussed, and tentatively attributed to H atoms present in the vicinity of some residual irradiation defects, like a complex of a H atom and a H-saturated vacancy.
Resumo:
We have recently found evidence of new donor acceptor pair (DAP) luminescence in molecular beam epitaxy (MBE) grown films. A variety of nominally undoped samples have been studied by photoluminescence (PL) over a temperature range of 5-300 K. The samples show intensive luminescence al energies of 3.404-3.413 eV varying with different sample at 5 K, as well as a fairly strong (DX)-X-0 line at low temperature. We attribute the Line at 3.404-3.413 eV to DAP recombination which is over 0.1 eV different from the well known DAP caused by ME-doping in GaN. The DAP line shows fine structure. it even predominates in one particular sample. The peak position shifts to higher energy with temperature increasing from 5 up to 70 K, and as the excitation laser intensity increases. The data are consistent with DAP luminescence involving an acceptor level of about 90 meV (presumably carbon) above the valence band edge in GaN. It is much shallower than the acceptor level of 250 meV produced by the p-type dopant Mg which is commonly used at present. (C) 1997 Elsevier Science S.A.
Resumo:
The free electron concentration of as-grown liquid encapsulated Czochralski (LEC) InP measured by Hall effect is much higher than the concentration of net donor impurity determined by glow discharge mass spectroscopy. Evidence of the existence of a native donor hydrogen-indium vacancy complex in LEC undoped and Fe-doped InP materials can be observed with infrared absorption spectra. The concentration increase of the donor complex correlates with the increase of ionized deep acceptor iron impurity Fe~(2+) concentration in Fe-doped semi-insulating (SI) InP. These results indicate that the hydrogen-indium vacancy complex is an important donor defect in as-grown LEC InP, and that it has significant influence on the compensation in Fe-doped SI InP.
Resumo:
Synthetic procedures for new mixed-donor macrocycle compounds were reported. The macrocyclic compounds were used in solvent extraction metal picrates such as Ag+, Hg2+, Cd2+, Zn2+, Cu2+, Ni2+, Mn2+, Pb2+, and Co2+. The metal picrate extractions were investigated at 25±0.1°C with the aid of UV-visible spectrometry. It was found that 6,7,9,10,12,13,23,24-octahydro-19H,26Hdibenzo[h,t](1,4,7,13,16,22,10,19) dioxatetrathiadiazasiclotetracosine-20,27(21H,28H)-dione showed selectivity towards Ag+, Hg2+, and Cd2+ among the other metals. The extraction constants (Log Kex) and complex compositions were determined for the Ag+ and Hg2+ complexes for this compound and 9,10,12,13,23,24,26,27,29,30-decahydro-5H,15H-dibenzo-[h,w][1,4,7,13,16,19,25-,10,22] dioxapentathiadiazacycloheptacosine-6,16(7H,17H)-dione.
Resumo:
A series of D-pi-A-pi-D type of near-infrared (NIR) fluorescent compounds based on benzobis(thia diazole) and its selenium analogues were synthesized and fully characterized by H-1 and C-13 NMR, high-resolution mass spectrometry, and elemental analysis. The absorption fluorescence, and electrochemical properties were also studied. Photoluminescence of these chromophores ranges from 900 to 1600 nm and their band gaps are between 1.19 and 0.56 eV.
Resumo:
Based on the aromatic dicarboxylic acid and N-donor ligands with different conformations, four Zn(II) metal-organic frameworks, namely [Zn(mfda)(L-1)](1), [Zn-2(mfda)(2)(L-2)]center dot DMF center dot H2O (2), [Zn-2(mfda)(2)(L-3)(H2O)]center dot DMF (3) and [Zn-2(mfda)(2)(L-4)] (4) have been synthesized (mfda = 9,9-dimethylfluorene-2,7-dicarboxylate anion, L-1 = 1,10-phenanthroline, L-2 = 4,4 '-bipyridine, L-3 = 2,5-bis(4-pyridyl)-1,3,4-ocadiazole and L-4 = 1,4-bis(imidazol-1-ylmethyl)benzene). Single-crystal X-ray diffraction has revealed that all compounds exhibit entangled structures. Compound 1 is composed of 1D zigzag chains that are entangled through the pi-pi stacking interactions to generate a three-fold interpenetrating diamond-like networks.
Resumo:
A series of donor-acceptor (D-A) co-oligomers with oligo(fluorene-alt-bithiophene) and perylene diimide as donor and acceptor segments, respectively, have been designed and synthesized. They can self-assembly into alternating D-A lamellar nanostructured films with the periods depending on the molecular length. These films have been successfully used in fabrication of high-performance single-molecular solar cells with power conversion efficiency up to 1.50%.