983 resultados para Vector fields
Resumo:
For a n-dimensional vector fields preserving some n-form, the following conclusion is reached by the method of Lie group. That is, if it admits an one-parameter, n-form preserving symmetry group, a transformation independent of the vector field is constructed explicitly, which can reduce not only dimesion of the vector field by one, but also make the reduced vector field preserve the corresponding ( n - 1)-form. In partic ular, while n = 3, an important result can be directly got which is given by Me,ie and Wiggins in 1994.
Resumo:
Exercises and solutions about vector fields. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
This paper deals with semi-global C(k)-solvability of complex vector fields of the form L = partial derivative/partial derivative t + x(r) (a(x) + ib(x))partial derivative/partial derivative x, r >= 1, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), epsilon > 0, where a and b are C(infinity) real-valued functions in (-epsilon, epsilon). It is shown that the interplay between the order of vanishing of the functions a and b at x = 0 influences the C(k)-solvability at Sigma = {0} x S(1). When r = 1, it is permitted that the functions a and b of L depend on the x and t variables, that is, L = partial derivative/partial derivative t + x(a(x, t) + ib(x, t))partial derivative/partial derivative x, where (x, t) is an element of Omega(epsilon).
Resumo:
We present a version of the Poincare-Bendixson Theorem on the Klein bottle K(2) for continuous vector fields. As a consequence, we obtain the fact that K(2) does not admit continuous vector fields having a omega-recurrent injective trajectory.
Resumo:
In this paper, we classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 3. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We establish in this paper a lower bound for the volume of a unit vector field (v) over right arrow defined ou S(n) \ {+/-x}, n = 2,3. This lower bound is related to the sum of the absolute values of the indices of (v) over right arrow at x and -x.
Resumo:
In this work are studied periodic perturbations, depending on two parameters, of planar polynomial vector fields having an annulus of large amplitude periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle. Such periodic orbits and the heteroclinic trajectory can be seen only by the global consideration of the polynomial vector fields on the whole plane, and not by their restriction to any compact set. The global study involving infinity is performed via the Poincare Compactification. It is shown that, for certain types of periodic perturbations, one can seek, in a neighborhood of the origin in the parameter plane, curves C-(m) of subharmonic bifurcations, for which the periodically perturbed system has subharmonics of order m, for any integer m.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study a class of quadratic reversible polynomial vector fields on S-2. We classify all the centers of this class of vector fields and we characterize its global phase portrait. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)