910 resultados para Hardy Operators


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26D10, 46E30, 47B38

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A composition operator is a linear operator between spaces of analytic or harmonic functions on the unit disk, which precomposes a function with a fixed self-map of the disk. A fundamental problem is to relate properties of a composition operator to the function-theoretic properties of the self-map. During the recent decades these operators have been very actively studied in connection with various function spaces. The study of composition operators lies in the intersection of two central fields of mathematical analysis; function theory and operator theory. This thesis consists of four research articles and an overview. In the first three articles the weak compactness of composition operators is studied on certain vector-valued function spaces. A vector-valued function takes its values in some complex Banach space. In the first and third article sufficient conditions are given for a composition operator to be weakly compact on different versions of vector-valued BMOA spaces. In the second article characterizations are given for the weak compactness of a composition operator on harmonic Hardy spaces and spaces of Cauchy transforms, provided the functions take values in a reflexive Banach space. Composition operators are also considered on certain weak versions of the above function spaces. In addition, the relationship of different vector-valued function spaces is analyzed. In the fourth article weighted composition operators are studied on the scalar-valued BMOA space and its subspace VMOA. A weighted composition operator is obtained by first applying a composition operator and then a pointwise multiplier. A complete characterization is given for the boundedness and compactness of a weighted composition operator on BMOA and VMOA. Moreover, the essential norm of a weighted composition operator on VMOA is estimated. These results generalize many previously known results about composition operators and pointwise multipliers on these spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A composition operator is a linear operator that precomposes any given function with another function, which is held fixed and called the symbol of the composition operator. This dissertation studies such operators and questions related to their theory in the case when the functions to be composed are analytic in the unit disc of the complex plane. Thus the subject of the dissertation lies at the intersection of analytic function theory and operator theory. The work contains three research articles. The first article is concerned with the value distribution of analytic functions. In the literature there are two different conditions which characterize when a composition operator is compact on the Hardy spaces of the unit disc. One condition is in terms of the classical Nevanlinna counting function, defined inside the disc, and the other condition involves a family of certain measures called the Aleksandrov (or Clark) measures and supported on the boundary of the disc. The article explains the connection between these two approaches from a function-theoretic point of view. It is shown that the Aleksandrov measures can be interpreted as kinds of boundary limits of the Nevanlinna counting function as one approaches the boundary from within the disc. The other two articles investigate the compactness properties of the difference of two composition operators, which is beneficial for understanding the structure of the set of all composition operators. The second article considers this question on the Hardy and related spaces of the disc, and employs Aleksandrov measures as its main tool. The results obtained generalize those existing for the case of a single composition operator. However, there are some peculiarities which do not occur in the theory of a single operator. The third article studies the compactness of the difference operator on the Bloch and Lipschitz spaces, improving and extending results given in the previous literature. Moreover, in this connection one obtains a general result which characterizes the compactness and weak compactness of the difference of two weighted composition operators on certain weighted Hardy-type spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let D denote the open unit disk in C centered at 0. Let H-R(infinity) denote the set of all bounded and holomorphic functions defined in D that also satisfy f(z) = <(f <(z)over bar>)over bar> for all z is an element of D. It is shown that H-R(infinity) is a coherent ring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterize the essential spectra of Toeplitz operators Ta on weighted Bergman spaces with matrix-valued symbols; in particular we deal with two classes of symbols, the Douglas algebra C+H∞ and the Zhu class Q := L∞ ∩VMO∂ . In addition, for symbols in C+H∞ , we derive a formula for the index of Ta in terms of its symbol a in the scalar-valued case, while in the matrix-valued case we indicate that the standard reduction to the scalar-valued case fails to work analogously to the Hardy space case. Mathematics subject classification (2010): 47B35,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 46F12, Secondary 44A15, 44A35

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 26A33

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collaborative user-led content creation by online communities, or produsage (Bruns 2008), has generated a variety of useful and important resources and other valuable outcomes, from open source software through the Wikipedia to a variety of smaller-scale, specialist projects. These are often seen as standing in an inherent opposition to commercial interests, and attempts to develop collaborations between community content creators and commercial partners have had mixed success rates to date. However, such tension between community and commerce is not inevitable, and there is substantial potential for more fruitful exchanges and collaboration. This article contributes to the development of this understanding by outlining the key underlying principles of such participatory community processes and exploring the potential tensions which could arise between these communities and their potential external partners. It also sketches out potential approaches to resolving them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Cancer can be a distressing experience for cancer patients and carers, impacting on psychological, social, physical and spiritual functioning. However, health professionals often fail to detect distress in their patients due to time constraints and a lack of experience. Also, with the focus on the patient, carer needs are often overlooked. This study investigated the acceptability of brief distress screening with the Distress Thermometer (DT) and Problem List (PL) to operators of a community-based telephone helpline, as well as to cancer patients and carers calling the service. Methods Operators (n = 18) monitored usage of the DT and PL with callers (cancer patients/carers, >18 years, and English-speaking) from September-December 2006 (n = 666). The DT is a single item, 11-point scale to rate level of distress. The associated PL identifies the cause of distress. Results The DT and PL were used on 90% of eligible callers, most providing valid responses. Benefits included having an objective, structured and consistent means for distress screening and triage to supportive care services. Reported challenges included apparent inappropriateness of the tools due to the nature of the call or level of caller distress, the DT numeric scale, and the level of operator training. Conclusions We observed positive outcomes to using the DT and PL, although operators reported some challenges. Overcoming these challenges may improve distress screening particularly by less experienced clinicians, and further development of the PL items and DT scale may assist with administration. The DT and PL allow clinicians to direct/prioritise interventions or referrals, although ongoing training and support is critical in distress screening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Countless studies have stressed the importance of social identity, particularly its role in various organizational outcomes, yet questions remain as to how identities initially develop, shift and change based on the configuration of multiple, pluralistic relationships grounded in an organizational setting. The interactive model of social identity formation has been proposed recently to explain the internalization of shared norms and values – critical in identity formation – has not received empirical examination. We analyzed multiple sources of data from nine nuclear professionals over three years to understand the construction of social identity in new entrants entering an organization. Informed by our data analyses, we found support for the interactive model and that age and level of experience influenced whether they undertook an inductive or deductive route of the group norm and value internalization. This study represents an important contribution to the study of social identity and the process by which identities are formed, particularly under conditions of duress or significant organizational disruption.