ON ISOMORPHIC CLASSIFICATIONS OF SPACES OF COMPACT OPERATORS


Autoria(s): GALEGO, Eloi Medina
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

19/04/2012

19/04/2012

2009

Resumo

We prove an extension of the classical isomorphic classification of Banach spaces of continuous functions on ordinals. As a consequence, we give complete isomorphic classifications of some Banach spaces K(X,Y(n)), eta >= omega, of compact operators from X to Y(eta), the space of all continuous Y-valued functions defined in the interval of ordinals [1, eta] and equipped with the supremum norm. In particular, under the Continuum Hypothesis, we extend a recent result of C. Samuel by classifying, up to isomorphism, the spaces K(X(xi), c(0)(Gamma)(eta)), where omega <= xi < omega(1,) eta >= omega, Gamma is a countable set, X contains no complemented copy of l(1), X* has the Mazur property and the density character of X** is less than or equal to N(1).

Identificador

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, v.137, n.10, p.3335-3342, 2009

0002-9939

http://producao.usp.br/handle/BDPI/16690

http://www.ams.org/journals/proc/2009-137-10/S0002-9939-09-09828-1/S0002-9939-09-09828-1.pdf

Idioma(s)

eng

Publicador

AMER MATHEMATICAL SOC

Relação

Proceedings of the American Mathematical Society

Direitos

openAccess

Copyright AMER MATHEMATICAL SOC

Palavras-Chave #Isomorphic classifications of spaces of continuous functions #compact operators #BANACH-SPACES #ORDINALS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion