ON ISOMORPHIC CLASSIFICATIONS OF SPACES OF COMPACT OPERATORS
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
19/04/2012
19/04/2012
2009
|
Resumo |
We prove an extension of the classical isomorphic classification of Banach spaces of continuous functions on ordinals. As a consequence, we give complete isomorphic classifications of some Banach spaces K(X,Y(n)), eta >= omega, of compact operators from X to Y(eta), the space of all continuous Y-valued functions defined in the interval of ordinals [1, eta] and equipped with the supremum norm. In particular, under the Continuum Hypothesis, we extend a recent result of C. Samuel by classifying, up to isomorphism, the spaces K(X(xi), c(0)(Gamma)(eta)), where omega <= xi < omega(1,) eta >= omega, Gamma is a countable set, X contains no complemented copy of l(1), X* has the Mazur property and the density character of X** is less than or equal to N(1). |
Identificador |
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, v.137, n.10, p.3335-3342, 2009 0002-9939 http://producao.usp.br/handle/BDPI/16690 http://www.ams.org/journals/proc/2009-137-10/S0002-9939-09-09828-1/S0002-9939-09-09828-1.pdf |
Idioma(s) |
eng |
Publicador |
AMER MATHEMATICAL SOC |
Relação |
Proceedings of the American Mathematical Society |
Direitos |
openAccess Copyright AMER MATHEMATICAL SOC |
Palavras-Chave | #Isomorphic classifications of spaces of continuous functions #compact operators #BANACH-SPACES #ORDINALS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |