A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators


Autoria(s): Perala, A.; Virtanen, Jani A.; Wolf, L.
Data(s)

06/08/2013

Resumo

We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.

Formato

text

Identificador

http://centaur.reading.ac.uk/34007/1/conop-2012-0004%20%282%29.pdf

Perala, A., Virtanen, J. A. <http://centaur.reading.ac.uk/view/creators/90004815.html> and Wolf, L. (2013) A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators. Concrete Operators, 1 (1). pp. 28-36. ISSN 2299-3282 doi: 10.2478/conop-2012-0004 <http://dx.doi.org/10.2478/conop-2012-0004>

Idioma(s)

en

Publicador

Versita

Relação

http://centaur.reading.ac.uk/34007/

creatorInternal Virtanen, Jani A.

http://www.degruyter.com/view/j/conop.2012.1.issue/conop-2012-0004/conop-2012-0004.xml?format=INT

10.2478/conop-2012-0004

Tipo

Article

PeerReviewed