990 resultados para Geodesics on Riemannian manifolds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we extend the well-known Leinfelder–Simader theorem on the essential selfadjointness of singular Schrödinger operators to arbitrary complete Riemannian manifolds. This improves some earlier results of Shubin, Milatovic and others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambo et al. (2005) [8]) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948) [1]) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this paper is to extend the generalized variational problem of Herglotz type to the more general context of the Euclidean sphere S^n. Motivated by classical results on Euclidean spaces, we derive the generalized Euler-Lagrange equation for the corresponding variational problem defined on the Riemannian manifold S^n. Moreover, the problem is formulated from an optimal control point of view and it is proved that the Euler-Lagrange equation can be obtained from the Hamiltonian equations. It is also highlighted the geodesic problem on spheres as a particular case of the generalized Herglotz problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let (M, g) be a complete Riemannian Manifold, Omega subset of M an open subset whose closure is diffeomorphic to an annulus. If partial derivative Omega is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in (Omega) over bar = Omega boolean OR partial derivative Omega starting orthogonally to one connected component of partial derivative Omega and arriving orthogonally onto the other one. The results given in [6] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a. class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g : X -> R, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral integral(X) g d mu, considered as a function on the space of all T-invariant Borel probability measures mu, attains its maximum on a measure supported on a periodic orbit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let (M, g) be a complete Riemannian manifold, Omega subset of Man open subset whose closure is homeomorphic to an annulus. We prove that if a,Omega is smooth and it satisfies a strong concavity assumption, then there are at least two distinct geodesics in starting orthogonally to one connected component of a,Omega and arriving orthogonally onto the other one. Using the results given in Giamb et al. (Adv Differ Equ 10:931-960, 2005), we then obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. Under a further symmetry assumption, the result is improved by showing the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinic orbits. In our proof we shall use recent deformation results proved in Giamb et al. (Nonlinear Anal Ser A: Theory Methods Appl 73:290-337, 2010).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the theory of Peres and Schlag to obtain generic lower bounds for Hausdorff dimension of images of sets by orthogonal projections on simply connected two-dimensional Riemannian manifolds of constant curvature. As a conclusion we obtain appropriate versions of Marstrand's theorem, Kaufman's theorem, and Falconer's theorem in the above geometrical settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate that the distribution of Wolfram classes within a cellular automata rule space in the triangular tessellation is not consistent across different topological general. Using a statistical mechanics approach, cellular automata dynamical classes were approximated for cellular automata defined on genus-0, genus-1 and genus-2 2-manifolds. A distribution-free equality test for empirical distributions was applied to identify cases in which Wolfram classes were distributed differently across topologies. This result implies that global structure and local dynamics contribute to the long term evolution of cellular automata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper considers distributed consensus algorithms for agents evolving on a connected compact homogeneous (CCH) manifold. The agents track no external reference and communicate their relative state according to an interconnection graph. The paper first formalizes the consensus problem for synchronization (i.e. maximizing the consensus) and balancing (i.e. minimizing the consensus); it thereby introduces the induced arithmetic mean, an easily computable mean position on CCH manifolds. Then it proposes and analyzes various consensus algorithms on manifolds: natural gradient algorithms which reach local consensus equilibria; an adaptation using auxiliary variables for almost-global synchronization or balancing; and a stochastic gossip setting for global synchronization. It closes by investigating the dependence of synchronization properties on the attraction function between interacting agents on the circle. The theory is also illustrated on SO(n) and on the Grassmann manifolds. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sparse coding aims to find a more compact representation based on a set of dictionary atoms. A well-known technique looking at 2D sparsity is the low rank representation (LRR). However, in many computer vision applications, data often originate from a manifold, which is equipped with some Riemannian geometry. In this case, the existing LRR becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to applications. In this paper, we generalize the LRR over the Euclidean space to the LRR model over a specific Rimannian manifold—the manifold of symmetric positive matrices (SPD). Experiments on several computer vision datasets showcase its noise robustness and superior performance on classification and segmentation compared with state-of-the-art approaches.