Dimensions of projections of sets on Riemannian surfaces of constant curvature


Autoria(s): Balogh, Zoltan; Iseli, Annina
Data(s)

2016

Resumo

We apply the theory of Peres and Schlag to obtain generic lower bounds for Hausdorff dimension of images of sets by orthogonal projections on simply connected two-dimensional Riemannian manifolds of constant curvature. As a conclusion we obtain appropriate versions of Marstrand's theorem, Kaufman's theorem, and Falconer's theorem in the above geometrical settings.

Formato

application/pdf

Identificador

http://boris.unibe.ch/81138/1/AMS_PROC_150715%20.pdf

Balogh, Zoltan; Iseli, Annina (2016). Dimensions of projections of sets on Riemannian surfaces of constant curvature. Proceedings of the American Mathematical Society, 144(7), pp. 2939-2951. American Mathematical Society 10.1090/proc/12934 <http://dx.doi.org/10.1090/proc/12934>

doi:10.7892/boris.81138

info:doi:10.1090/proc/12934

urn:issn:0002-9939

Idioma(s)

eng

Publicador

American Mathematical Society

Relação

http://boris.unibe.ch/81138/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Balogh, Zoltan; Iseli, Annina (2016). Dimensions of projections of sets on Riemannian surfaces of constant curvature. Proceedings of the American Mathematical Society, 144(7), pp. 2939-2951. American Mathematical Society 10.1090/proc/12934 <http://dx.doi.org/10.1090/proc/12934>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed