Dimensions of projections of sets on Riemannian surfaces of constant curvature
Data(s) |
2016
|
---|---|
Resumo |
We apply the theory of Peres and Schlag to obtain generic lower bounds for Hausdorff dimension of images of sets by orthogonal projections on simply connected two-dimensional Riemannian manifolds of constant curvature. As a conclusion we obtain appropriate versions of Marstrand's theorem, Kaufman's theorem, and Falconer's theorem in the above geometrical settings. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/81138/1/AMS_PROC_150715%20.pdf Balogh, Zoltan; Iseli, Annina (2016). Dimensions of projections of sets on Riemannian surfaces of constant curvature. Proceedings of the American Mathematical Society, 144(7), pp. 2939-2951. American Mathematical Society 10.1090/proc/12934 <http://dx.doi.org/10.1090/proc/12934> doi:10.7892/boris.81138 info:doi:10.1090/proc/12934 urn:issn:0002-9939 |
Idioma(s) |
eng |
Publicador |
American Mathematical Society |
Relação |
http://boris.unibe.ch/81138/ |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Balogh, Zoltan; Iseli, Annina (2016). Dimensions of projections of sets on Riemannian surfaces of constant curvature. Proceedings of the American Mathematical Society, 144(7), pp. 2939-2951. American Mathematical Society 10.1090/proc/12934 <http://dx.doi.org/10.1090/proc/12934> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |