On maximizing measures of homeomorphisms on compact manifolds
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g : X -> R, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral integral(X) g d mu, considered as a function on the space of all T-invariant Borel probability measures mu, attains its maximum on a measure supported on a periodic orbit. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[301485/03-8] CNPq[304360/05-8] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
FUNDAMENTA MATHEMATICAE, v.200, n.2, p.145-159, 2008 0016-2736 http://producao.usp.br/handle/BDPI/30570 10.4064/fm200-2-3 |
Idioma(s) |
eng |
Publicador |
POLISH ACAD SCIENCES INST MATHEMATICS |
Relação |
Fundamenta Mathematicae |
Direitos |
closedAccess Copyright POLISH ACAD SCIENCES INST MATHEMATICS |
Palavras-Chave | #periodic orbits #cocycles #Minkowski function #sources #Mathematics |
Tipo |
article original article publishedVersion |