Existence of orthogonal geodesic chords on Riemannian manifolds with concave boundary and homeomorphic to the N-dimensional disk


Autoria(s): GIAMBO, Roberto; GIANNONI, Fabio; PICCIONE, Paolo
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambo et al. (2005) [8]) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948) [1]) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level. (C) 2010 Elsevier Ltd. All rights reserved.

Identificador

NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v.73, n.2, p.290-337, 2010

0362-546X

http://producao.usp.br/handle/BDPI/30716

10.1016/j.na.2010.03.019

http://dx.doi.org/10.1016/j.na.2010.03.019

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

Relação

Nonlinear Analysis-theory Methods & Applications

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #Orthogonal geodesic chords #Riemannian manifolds #Concave boundary #Brake orbits #Seifert conjecture #MULTIPLE BRAKE ORBITS #HAMILTONIAN-SYSTEMS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion