11 resultados para aerosol formation

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der Vergangenheit wurde die Wichtigkeit von Iodverbindungen im Bezug auf die Aerosolbildung in Küstennähe wiederholt bestätigt. Durch Photolyse von flüchtigen iodorganischen Verbindungen (VOIs) können in der Atmosphäre Iodatome gebildet werden. Diese hochreaktiven Radikale wiederum können mit Ozon und/oder OH-Radikalen reagieren. Es werden so unter anderem schwerflüchtige Iodoxide gebildet, die in die Partikelphase übergehen können. Um ein Verständnis für die Mechanismen und chemischen Reaktionen zu bekommen, die zur Bildung von iodhaltigen Aerosolpartikeln führen, müssen auch Vorläufersubstanzen qualitativ und quanitativ bestimmt werden. Ob diese Reaktionen und chemischen Verbindungen auch über dem offenen Ozean einen Beitrag zu Aerosolbildung und somit zur Beeinflussung des weltweitem Klimas leisten, soll in dem EU-Projekt MAP geklärt werden, diese Arbeit ist Teil dieses Projekts. Im Rahmen dieser Arbeit wurde eine Methode entwickelt, die es zum einen möglich macht, anorganisches Iod in Meerwasser zu bestimmen. Zum anderen sollte eine Methode entwickelt werden, um elementares Iod in der maritimen Atmosphäre zu bestimmen. Es wurde eine Derivatisierungsmethode entwickelt, die es möglich macht elementares Iod in Anwesenheit von Stärke, a-Cyclodextrin oder RAMEA zu derivatisieren. Die Derivatisierung erfolgt zu 4-Iodo-N,N-Dimethylanilin. Durch Extraktion wird der Analyt in die organische Phase überführt. Die Quantifizierung erfolgt anschließend über die Analyse mit GC/MS und externer Kalibrierung. Die absolute Nachweisgrenze für Iod in Wasser beträgt 0,57nmol, für Iodid 0,014nmol und für Iodat 0,115nmol. Die absoluten Nachweisgrenzen für Iod in Anwesenheit eines Absorptionsmittel betragen für Stärke 0,24nmol, für a-Cyclodextrin 0,9nmol und für RAMEA 0,35nmol. Die Analysenmethoden wurden zunächst im Labor entwickelt und anschließend zur Analyse von Realproben verwendet. An verschiedenen Orten wurden Meerwasserproben (auf der Celtic Explorer und in der Nähe der Mace Head Messstation) genommen und deren Iod-, Iodid- und Iodatgehalt bestimmt. Keine der Proben enthielt elementares Iod. Iodid konnte in allen Proben detektiert werden. In Proben, die auf dem offenen Ozean an Bord der Celtic Explorer genommen wurden variierte die Menge zwischen 12µg/L und 90µg/L. Auffällig war hierbei, dass die Proben, die in Küstennähe genommen wurden höhere Iodidkonzentrationen aufwiesen. Ein Einfluss der Küste und der dort vorhandenen Makroalgen ist sehr wahrscheinlich. Meerwasserproben, die in der Nähe der MHARS genommen wurden wiesen höhere Konzentrationen und einen größeren dynamischen Bereich der Iodidkonzentrationen auf. Die Konzentrationen variierten von 29µg/L bis 630 µg/L. Der Iodatgehalt der Meerwasserproben wurde ebenfalls bestimmt. 1µg/L bis 90µg/L Iodat konnte in den Proben vom offenen Ozean detektiert werden. Die Küstenproben wiesen mit 150µg/L bis 230µg/L deutlich höhere Iodatkonzentrationen auf. Es konnte kein Zusammenhang zwischen der Tageszeit und den Iodid- oder Iodatkonzentrationen gefunden werden. Es konnte ebenso kein Zusammenhang zwischen der Fluoreszenz des Meerwassers und den Iodid- oder Iodatkonzentrationen gefunden werden. Auf der Celtic Explorer, wie auch in Mace Head wurden außerdem beschichtete Denuder zur Anreicherung von elementarem Iod aus Luft eingesetzt. Die Denuder, die auf dem Schiff verwendet wurden waren mit Stärke bzw. mit a-CD beschichtet. Die mit Stärke beschichteten Denuder geben so einen Überblick über die Iodkonzentration in Luft über einen längeren Zeitraum (ca. 2-3h), während die mit Cyclodextrin beschichteten Denuder die Iodkonzentration in der letzten halben Stunde der Probennahme widerspiegeln. In fast allen Denudern, die mit Stärke beschichtet waren, konnte mehr Iod nachgewiesen werden, als in denen, die mit a-CD beschichtet waren. Im Allgemeinen konnten in den Proben höhere Iodkonzentrationen gefunden werden, die nachts genommen wurden. Der Grund hierfür liegt in der sehr hohen Photolyserate des elementaren Iods während des Tages. Ein Zusammenhang zwischen der Konzentration von VOIs und dem Iodgehalt konnte nicht gefunden werden. Anhand der genommen Denuderproben von Mace Head konnte festgestellt werden, dass die Iodkonzentration in Denudern, deren Probenahme während Ebbe beendet wurde hoch deutlich höher sind, als die in anderen Denudern. Das lässt sich dadurch erklären, dass Makroalgen während Ebbe in direktem Kontakt zur Luft sind und somit mehr Iod in der Luft zu finden ist. Eine wichtige Frage, die im Zusammenhang mit der Iodchemie in maritimer Umgebung steht konnte im Rahmen dieser Arbeit geklärt werden. In der maritimen Grenzschicht über dem Nordatlantik konnte elementares Iod detektiert werden, d.h. es deutet sich an, dass Iod auch auf dem offenen Ozean einen Beitrag zur Partikelbildung liefern kann und es sich nicht ausschließlich um einen Küsteneffekt handelt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biogene flüchtige organische Verbindungen (BFOV) werden in großen Mengen aus terrestrischenrnÖkosystemen, insbesondere aus Wäldern und Wiesen, in die untere Troposphäre emittiert. Austausch-rnFlüsse von BFOVs sind in der troposphärischen Chemie wichtig, weil sie eine bedeutende Rolle in derrnOzon- und Aerosolbildung haben. Trotzdem bleiben die zeitliche und räumliche Änderung der BFOVrnEmissionen und ihre Rolle in Bildung und Wachstum von Aerosolen ungewiss.rnDer Fokus dieser Arbeit liegt auf der in-situ Anwendung der Protonen Transfer ReaktionsrnMassenspektrometrie (PTR-MS) und der Messung von biogenen flüchtigen organischen Verbindungen inrnnordländischen, gemäßigten und tropischen Waldökosystemen während drei unterschiedlicherrnFeldmesskampagnen. Der Hauptvorteil der PTR-MS-Technik liegt in der hohen Messungsfrequenz,rnwodurch eine eventuelle Änderung in der Atmosphäre durch Transport, Vermischung und Chemiernonline beobachtet werden kann. Die PTR-MS-Messungen wurden zweimal am Boden aus und einmalrnvon einem Forschungsflugzug durchgeführt.rnIn Kapitel 3 werden die PTR-MS-Daten, gesammelt während der Flugmesskampagne über demrntropischen Regenwald, vorgelegt. Diese Studie zeigt den Belang der Grenzschichtdynamik für diernVerteilung von Spurengasen mittels eines eindimensionalen Säule - Chemie und KlimaModells (SCM).rnDer Tagesablauf von Isopren zeigte zwischen 14:00 und 16:15 Uhr lokaler Zeit einen Mittelwert vonrn5.4 ppbv auf der Höhe der Baumspitzen und von 3.3 ppbv über 300 m Höhe. Dies deutet darauf hin, dassrnsowohl der turbulente Austausch als auch die hohe Reaktionsfähigkeit von Isopren mit den OxidantienrnOH und Ozon eine wichtige Rolle spielen. Nach dem Ausgleich von chemischen Verlusten undrnEntrainment (Ein- und Ausmischung von Luft an der Grenzschicht), wurde ein Fluss vonrn8.4 mg Isopren m-2h-1 unter teilweise bewölkten Bedingungen für den tropischen Regenwald in derrnGuyanregion abgeschätzt. Dies entspricht einem täglichen Emissionsfluss von 28 mg Isopren prornQuadratmeter.rnIm Kapitel 4 werden die Messungen, welche auf einer Hügellage in gemäßigter Breite inrnsüddeutschland stattgefunden haben, diskutiert. Bei diesem Standort ist die Grenzschicht nachts unter diernStandorthöhe abgefallen, was den Einsatzort von Emissionen abgesondert hatte. Während diernGrenzschicht morgens wieder über die Höhe des Einsatzortes anstieg, konnten die eingeschlossenenrnnächtlichen Emissionen innerhalb der bodennahen Schicht beobachtet werden. Außerdem wurde einrndeutlicher Anstieg von flüchtigen organischen Verbindungen gemessen, wenn die Luftmassen überrnMünchen geführt wurden oder wenn verschmutzte Luftmassen aus dem Po-Tal über die Alpen nachrnDeutschland transportiert wurden. Daten von dieser Kampagne wurden genutzt, um die Änderungen inrndem Mischungsverhältnis der flüchtigen organischen Verbindungen, verbunden mit dem Durchfluss vonrnwarmen und kalten Wetterfronten sowie bei Regen zu untersuchen.rnIm Kapitel 5 werden PTR-MS-Messungen aus dem nördlichen Nadelwaldgürtel beschrieben. Starkernnächtliche Inversionen mit einer niedrigen Windgeschwindigkeit fingen die Emissionen vonrnnahegelegenen Kiefernwäldern und andere BFOV-Quellen ab, was zu hohen nächtlichen BFOVMischverhältnissenrnführte. Partikelereignisse wurden für Tag und Nacht detailliert analysiert. Diernnächtlichen Partikelereignisse erfolgten synchron mit starken extremen von Monoterpenen, obwohl dasrnzweite Ereignis Kernbildung einschloss und nicht mit Schwefelsäure korrelierte. Die MonoterpenrnMischungsverhältnisse von über 16 ppbv waren unerwartet hoch für diese Jahreszeit. NiedrigernWindgeschwindigkeiten und die Auswertung von Rückwärtstrajektorien deuten auf eine konzentrierternQuelle in der Nähe von Hyytiälä hin. Die optische Stereoisomerie von Monoterpenen hat bestätigt, dassrndie Quelle unnatürlich ist, da das Verhältnis von [(+)-α-pinen]/[(−)-α-pinen] viel höher ist als dasrnnatürliches Verhältnis der beiden Enantiomeren.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ein wesentlicher Anteil an organischem Kohlenstoff, der in der Atmosphäre vorhanden ist, wird als leichtflüchtige organische Verbindungen gefunden. Diese werden überwiegend durch die Biosphäre freigesetzt. Solche biogenen Emissionen haben einen großen Einfluss auf die chemischen und physikalischen Eigenschaften der Atmosphäre, indem sie zur Bildung von bodennahem Ozon und sekundären organischen Aerosolen beitragen. Um die Bildung von bodennahem Ozon und von sekundären organischen Aerosolen besser zu verstehen, ist die technische Fähigkeit zur genauen Messung der Summe dieser flüchtigen organischen Substanzen notwendig. Häufig verwendete Methoden sind nur auf den Nachweis von spezifischen Nicht-Methan-Kohlenwasserstoffverbindungen fokussiert. Die Summe dieser Einzelverbindungen könnte gegebenenfalls aber nur eine Untergrenze an atmosphärischen organischen Kohlenstoffkonzentrationen darstellen, da die verfügbaren Methoden nicht in der Lage sind, alle organischen Verbindungen in der Atmosphäre zu analysieren. Einige Studien sind bekannt, die sich mit der Gesamtkohlenstoffbestimmung von Nicht-Methan-Kohlenwasserstoffverbindung in Luft beschäftigt haben, aber Messungen des gesamten organischen Nicht-Methan-Verbindungsaustauschs zwischen Vegetation und Atmosphäre fehlen. Daher untersuchten wir die Gesamtkohlenstoffbestimmung organische Nicht-Methan-Verbindungen aus biogenen Quellen. Die Bestimmung des organischen Gesamtkohlenstoffs wurde durch Sammeln und Anreichern dieser Verbindungen auf einem festen Adsorptionsmaterial realisiert. Dieser erste Schritt war notwendig, um die stabilen Gase CO, CO2 und CH4 von der organischen Kohlenstofffraktion zu trennen. Die organischen Verbindungen wurden thermisch desorbiert und zu CO2 oxidiert. Das aus der Oxidation entstandene CO2 wurde auf einer weiteren Anreicherungseinheit gesammelt und durch thermische Desorption und anschließende Detektion mit einem Infrarot-Gasanalysator analysiert. Als große Schwierigkeiten identifizierten wir (i) die Abtrennung von CO2 aus der Umgebungsluft von der organischen Kohlenstoffverbindungsfaktion während der Anreicherung sowie (ii) die Widerfindungsraten der verschiedenen Nicht-Methan-Kohlenwasserstoff-verbindungen vom Adsorptionsmaterial, (iii) die Wahl des Katalysators sowie (iiii) auftretende Interferenzen am Detektor des Gesamtkohlenstoffanalysators. Die Wahl eines Pt-Rd Drahts als Katalysator führte zu einem bedeutenden Fortschritt in Bezug auf die korrekte Ermittlung des CO2-Hintergrund-Signals. Dies war notwendig, da CO2 auch in geringen Mengen auf der Adsorptionseinheit während der Anreicherung der leichtflüchtigen organischen Substanzen gesammelt wurde. Katalytische Materialien mit hohen Oberflächen stellten sich als unbrauchbar für diese Anwendung heraus, weil trotz hoher Temperaturen eine CO2-Aufnahme und eine spätere Abgabe durch das Katalysatormaterial beobachtet werden konnte. Die Methode wurde mit verschiedenen leichtflüchtigen organischen Einzelsubstanzen sowie in zwei Pflanzenkammer-Experimenten mit einer Auswahl an VOC-Spezies getestet, die von unterschiedlichen Pflanzen emittiert wurden. Die Pflanzenkammer-messungen wurden durch GC-MS und PTR-MS Messungen begleitet. Außerdem wurden Kalibrationstests mit verschiedenen Einzelsubstanzen aus Permeations-/Diffusionsquellen durchgeführt. Der Gesamtkohlenstoffanalysator konnte den tageszeitlichen Verlauf der Pflanzenemissionen bestätigen. Allerdings konnten Abweichungen für die Mischungsverhältnisse des organischen Gesamtkohlenstoffs von bis zu 50% im Vergleich zu den begleitenden Standardmethoden beobachtet werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This doctoral thesis was focused on the investigation of enantiomeric and non-enantiomeric biogenic organic compound (BVOC) emissions from both leaf and canopy scales in different environments. In addition, the anthropogenic compounds benzene, toluene, ethylbenzene, and xylenes (BTEX) were studied. BVOCs are emitted into the lower troposphere in large quantities (ca. 1150 Tg C ·yr-1), approximately an order of magnitude greater than the anthropogenic VOCs. BVOCs are particularly important in tropospheric chemistry because of their impact on ozone production and secondary organic aerosol formation or growth. The BVOCs examined in this study were: isoprene, (-)/ (+)-α-pinene, (-)/ (+)-ß-pinene, Δ-3-carene, (-)/ (+)-limonene, myrcene, eucalyptol and camphor, as these were the most abundant BVOCs observed both in the leaf cuvette study and the ambient measurements. In the laboratory cuvette studies, the sensitivity of enantiomeric enrichment change from the leaf emission has been examined as a function of light (0-1600 PAR) and temperature (20-45°C). Three typical Mediterranean plant species (Quercus ilex L., Rosmarinus officinalis L., Pinus halepensis Mill.) with more than three individuals of each have been investigated using a dynamic enclosure cuvette. The terpenoid compound emission rates were found to be directly linked to either light and temperature (e.g. Quercus ilex L.) or mainly to temperature (e.g. Rosmarinus officinalis L., Pinus halepensis Mill.). However, the enantiomeric signature showed no clear trend in response to either the light or temperature; moreover a large variation of enantiomeric enrichment was found during the experiment. This enantiomeric signature was also used to distinguish chemotypes beyond the normal achiral chemical composition method. The results of nineteen Quercus ilex L. individuals, screened under standard conditions (30°C and 1000 PAR) showed four different chemotypes, whereas the traditional classification showed only two. An enclosure branch cuvette set-up was applied in the natural boreal forest environment from four chemotypes of Scots pine (Pinus sylvestris) and one chemotype of Norway spruce (Picea abies) and the direct emissions compared with ambient air measurements above the canopy during the HUMPPA-COPEC 2010 summer campaign. The chirality of a-pinene was dominated by (+)-enantiomers from Scots pine while for Norway spruce the chirality was found to be opposite (i.e. Abstract II (-)-enantiomer enriched) becoming increasingly enriched in the (-)-enantiomer with light. Field measurements over a Spanish stone pine forest were performed to examine the extent of seasonal changes in enantiomeric enrichment (DOMINO 2008). These showed clear differences in chirality of monoterpene emissions. In wintertime the monoterpene (-)-a-pinene was found to be in slight enantiomeric excess over (+)-a-pinene at night but by day the measured ratio was closer to one i.e. racemic. Samples taken the following summer in the same location showed much higher monoterpene mixing ratios and revealed a strong enantiomeric excess of (-)-a-pinene. This indicated a strong seasonal variance in the enantiomeric emission ratio which was not manifested in the day/night temperature cycles in wintertime. A clear diurnal cycle of enantiomeric enrichment in a-pinene was also found over a French oak forest and the boreal forest. However, while in the boreal forest (-)-a-pinene enrichment increased around the time of maximum light and temperature, the French forest showed the opposite tendency with (+)-a-pinene being favored. For the two field campaigns (DOMINO 2008 and HUMPPA-COPEC 2010), the BTEX were also investigated. For the DOMINO campaign, mixing ratios of the xylene isomers (meta- and para-) and ethylbenzene, which are all well resolved on the ß-cyclodextrin column, were exploited to estimate average OH radical exposures to VOCs from the Huelva industrial area. These were compared to empirical estimates of OH based on JNO2 measured at the site. The deficiencies of each estimation method are discussed. For HUMPPA-COPEC campaign, benzene and toluene mixing ratios can clearly define the air mass influenced by the biomass burning pollution plume from Russia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosol particles and water vapour are two important constituents of the atmosphere. Their interaction, i.e. thecondensation of water vapour on particles, brings about the formation of cloud, fog, and raindrops, causing the water cycle on the earth, and being responsible for climate changes. Understanding the roles of water vapour and aerosol particles in this interaction has become an essential part of understanding the atmosphere. In this work, the heterogeneous nucleation on pre-existing aerosol particles by the condensation of water vapour in theflow of a capillary nozzle was investigated. Theoretical and numerical modelling as well as experiments on thiscondensation process were included. Based on reasonable results from the theoretical and numerical modelling, an idea of designing a new nozzle condensation nucleus counter (Nozzle-CNC), that is to utilise the capillary nozzle to create an expanding water saturated air flow, was then put forward and various experiments were carried out with this Nozzle-CNC under different experimental conditions. Firstly, the air stream in the long capillary nozzle with inner diameter of 1.0~mm was modelled as a steady, compressible and heat-conducting turbulence flow by CFX-FLOW3D computational program. An adiabatic and isentropic cooling in the nozzle was found. A supersaturation in the nozzle can be created if the inlet flow is water saturated, and its value depends principally on flow velocity or flow rate through the nozzle. Secondly, a particle condensational growth model in air stream was developed. An extended Mason's diffusion growthequation with size correction for particles beyond the continuum regime and with the correction for a certain particle Reynolds number in an accelerating state was given. The modelling results show the rapid condensational growth of aerosol particles, especially for fine size particles, in the nozzle stream, which, on the one hand, may induce evident `over-sizing' and `over-numbering' effects in aerosol measurements as nozzle designs are widely employed for producing accelerating and focused aerosol beams in aerosol instruments like optical particle counter (OPC) and aerodynamical particle sizer (APS). It can, on the other hand, be applied in constructing the Nozzle-CNC. Thirdly, based on the optimisation of theoretical and numerical results, the new Nozzle-CNC was built. Under various experimental conditions such as flow rate, ambient temperature, and the fraction of aerosol in the total flow, experiments with this instrument were carried out. An interesting exponential relation between the saturation in the nozzle and the number concentration of atmospheric nuclei, including hygroscopic nuclei (HN), cloud condensation nuclei (CCN), and traditionally measured atmospheric condensation nuclei (CN), was found. This relation differs from the relation for the number concentration of CCN obtained by other researchers. The minimum detectable size of this Nozzle-CNC is 0.04?m. Although further improvements are still needed, this Nozzle-CNC, in comparison with other CNCs, has severaladvantages such as no condensation delay as particles larger than the critical size grow simultaneously, low diffusion losses of particles, little water condensation at the inner wall of the instrument, and adjustable saturation --- therefore the wide counting region, as well as no calibration compared to non-water condensation substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sekundäres organisches Aerosol (SOA) ist ein wichtiger Bestandteil von atmosphärischen Aerosolpartikeln. Atmosphärische Aerosole sind bedeutsam, da sie das Klima über direkte (Streuung und Absorption von Strahlung) und indirekte (Wolken-Kondensationskeime) Effekte beeinflussen. Nach bisherigen Schätzungen ist die SOA-Bildung aus biogenen Kohlenwasserstoffen global weit wichtiger als die SOA-Bildung aus anthropogenen Kohlenwasserstoffen. Reaktive Kohlenwasserstoffe, die in großen Mengen von der Vegetation emittiert werden und als die wichtigsten Vorläufersubstanzen für biogenes SOA gelten, sind die Terpene. In der vorliegenden Arbeit wurde eine Methode entwickelt, welche die Quantifizierung von aciden Produkten der Terpen-Oxidation ermöglicht. Die Abscheidung des größenselektierten Aerosols (PM 2.5) erfolgte auf Quarzfilter, die unter Zuhilfenahme von Ultraschall mittels Methanol extrahiert wurden. Nach Aufkonzentrierung und Lösungsmittelwechsel auf Wasser sowie Standardaddition wurden die Proben mit einer Kapillar-HPLC-ESI-MSn-Methode analysiert. Das verwendete Ionenfallen-Massenspektrometer (LCQ-DECA) bietet die Möglichkeit, Strukturaufklärung durch selektive Fragmentierung der Qasimolekülionen zu betreiben. Die Quantifizierung erfolgte teilweise im MS/MS-Modus, wodurch Selektivität und Nachweisgrenze verbessert werden konnten. Um Produkte der Terpen-Oxidation zu identifizieren, die nicht als Standards erhältlich waren, wurden Ozonolysexperimente durchgeführt. Dadurch gelang die Identifizierung einer Reihe von Oxidationsprodukten in Realproben. Neben schon bekannten Produkten der Terpen-Oxidation konnten einige Produkte erstmals in Realproben eindeutig als Produkte des α Pinens nachgewiesen werden. In den Proben der Ozonolyseexperimente konnten auch Produkte mit hohem Molekulargewicht (>300 u) nachgewiesen werden, die Ähnlichkeit zeigen zu den als Dimeren oder Polymeren in der Literatur bezeichneten Substanzen. Sie konnten jedoch nicht in Feldproben gefunden werden. Im Rahmen von 5 Messkampagnen in Deutschland und Finnland wurden Proben der atmosphärischen Partikelphase genommen. Die Quantifizierung von Produkten der Oxidation von α-Pinen, β-Pinen, 3-Caren, Sabinen und Limonen in diesen Proben ergab eine große zeitliche und örtliche Variationsbreite der Konzentrationen. Die Konzentration von Pinsäure bewegte sich beispielsweise zwischen etwa 0,4 und 21 ng/m³ während aller Messkampagnen. Es konnten stets Produkte verschiedener Terpene nachgewiesen werden. Produkte einiger Terpene eignen sich sogar als Markersubstanzen für verschiedene Pflanzenarten. Sabinen-Produkte wie Sabinsäure können als Marker für die Emissionen von Laubbäumen wie Buchen oder Birken verwendet werden, während Caren-Produkte wie Caronsäure als Marker für Nadelbäume, speziell Kiefern, verwendet werden können. Mit den quantifizierten Substanzen als Marker wurde unter zu Hilfenahme von Messungen des Gehaltes an organischem und elementarem Kohlenstoff im Aerosol der Anteil des sekundären organischen Aerosols (SOA) errechnet, der von der Ozonolyse der Terpene stammt. Erstaunlicherweise konnten nur 1% bis 8% des SOA auf die Ozonolyse der Terpene zurückgeführt werden. Dies steht im Gegensatz zu der bisherigen Meinung, dass die Ozonolyse der Terpene die wichtigste Quelle für biogenes SOA darstellt. Gründe für diese Diskrepanz werden in der Arbeit diskutiert. Um die atmosphärischen Prozesse der Bildung von SOA vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Für die vorliegende Arbeit wurde die chemische Zusammensetzung von natürlichen und anthropogenen Aerosolpartikeln untersucht. Zu diesem Zweck wurde das Aerosolmassenspektrometer (AMS) der Firma Aerodyne, Inc. eingesetzt, womit neben den chemischen Substanzen auch die Massengrößenverteilungen der einzelnen Komponenten der Aerosolpartikel in einem Größenbereich zwischen 20 und 1500 nm quantitativ gemessen werden können. Im Rahmen der HAZE2002-Messkampagne am Meteorologischen Observatorium Hohenpeißenberg wurden die Aerosolpartikel aus natürlichen Quellen untersucht. Diese Partikel bestanden aus Sulfat, Nitrat, Ammonium und organischen Komponenten (Organics). Sulfat, Nitrat und Ammonium wiesen den gleichen Durchmesser auf, was auf eine interne Mischung dieser drei chemischen Substanzen in den Partikeln hinwies. Die Organics hatten einen kleineren Durchmesser, was auf jüngere Partikel hindeutete. Die Analyse der organischen Substanzen in den Aerosolpartikeln zeigte, dass diese zu einem großen Teil aus oxidierten Kohlenwasserstoffen bestanden, die während den Nachmittagsstunden gebildet wurden. Die thermische Abhängigkeit der Bildung von Ammoniumnitrat konnte sowohl gemessen als auch mit Hilfe Konzentrationsberechnungen nach [Seinfeld und Pandis, 1998] nachvollzogen werden. Die gemessene Partikelneubildung konnte auf die ternäre Nukleation aus H2SO4/H2O/NH3 zurückgeführt werden. Aerosolpartikel aus anthropogenen Quellen, wie z.B. der motorischen Verbrennung, wurden während der Messungen in Zusammenarbeit mit dem Ford Forschungszentrum in Aachen (FFA) untersucht. Nukleationspartikel (D 45 nm) konnten bei Experimenten auf dem Rollenprüfstand nur bei einer ausreichend hohen Verdünnung, einem hohen Schwefelgehalt im Kraftstoff und einem hohen Lastzustand nachgewiesen werden. Die Messungen an der Autobahn A4 ergaben eine bimodale Massengrößenverteilung der organischen Partikel, wobei die erste Mode Partikeln aus der motorischen Verbrennungen zugeschrieben werden konnte. Aufgrund der guten Charakterisierung stellt das AMS ein vielseitig einsetzbares Aerosolmessgerät dar, welches in einer hohen Zeitauflösung eine quantitative, größenaufgelöste chemische Analyse der zu messenden Aerosolpartikel bereitstellt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmosphärische Aerosole beeinflussen den Strahlungshaushalt und damit das Klima der Erde. Dies geschieht sowohl direkt (Streuung und Absorption), als auch indirekt (Wolkenkondensationskeime). Das sekundäre organische Aerosol (SOA) bildet einen wichtigen Bestandteil des atmosphärischen Aerosols. Seine Bildung erfolgt durch Reaktionen von Kohlenwasserstoffen mit atmosphärischen Oxidationsmitteln (z.B. Ozon, OH-Radikalen). Eine Klasse dieser Kohlenwasserstoffe sind die Terpene. Sie werden in großen Mengen durch die Vegetation emittiert und gelten als wichtige Vorläufersubstanzen des biogenen SOAs. In den Reaktionen von Monoterpenen und Sesquiterpenen mit atmosphärischen Reaktionspartnern wird eine große Vielfalt an multifunktionellen Reaktionsprodukten gebildet, von denen bis heute nur ein Bruchteil identifiziert werden konnte. In der vorliegenden Arbeit soll im Speziellen die Bildung von organischen Peroxiden und oligomeren Verbindungen im biogenen SOA untersucht und Nachweise einzelner Moleküle erbracht werden.rnFür eine Identifizierung von organischen Peroxiden aus der Oxidation einzelner Monoterpene und Sesquiterpene mit Ozon wurden die Reaktionsprodukte direkt in eine bei Atmosphärendruck arbeitende chemische Ionisationsquelle überführt und massenspektrometrisch untersucht (online-APCI-MS). Hierdurch konnten organische Hydroperoxide in der Partikelphase nachgewiesen werden, welche sich durch eine signifikante Abspaltung von H2O2 im Tandem-Massenspektrum (MS/MS) auszeichneten. Des Weiteren sollte die Bildung von höhermolekularen Verbindungen („Dimere“) im SOA des α-Pinens untersucht werden. Hierfür wurden zunächst die Reaktionsprodukte des Cyclohexens, das als einfache Modellverbindung des α-Pinens dient, mittels online-APCI-MS und offline durch Flüssigkeitschromatographie und Elektrospray-Ionenfallenmassenspektrometrie (HPLC/ESI-MS) untersucht. Verschiedene Produkte der Cyclohexen-Ozonolyse konnten hierbei als Esterverbindungen identifiziert werden, wobei eigens synthetisierte Referenzsubstanzen für die Identifizierung verwendet wurden. In einem weiteren Experiment, indem gleichzeitig Cyclohexen und α-Pinen mit Ozon umgesetzt wurden, konnten ebenfalls eine Bildung von höhermolekularen Estern nachgewiesen werden. Es handelte sich hierbei um „Mischester“, deren Struktur aus Reaktionsprodukten der beiden VOC-Vorläufermoleküle aufgebaut war. Durch diese neuen Erkenntnisse, über die Bildung von Estern im SOA des Cyclohexens, wurden die Dimer-Bildung einer reinen α-Pinen/Ozon-Reaktion online und offline massenspektrometrisch untersucht. Hier stellten sich als Hauptprodukte die Verbindungen mit m/z 357 und m/z 367 ([M-H]--Ionen) heraus, welche zudem erstmals auf einem Filter einer Realprobe aus Hyytiälä, Finnland nachgewiesen werden konnten. Aufgrund ihrer Fragmentierung in MS/MS-Untersuchungen sowie den exakten Summenformeln aus FT-MS Messungen konnte für die Struktur der höhermolekularen Verbindung mit m/z 367 ebenfalls ein Ester und für m/z 357 ein Peroxyhemiacetal vorgeschlagen werden. Die vorgeschlagene Struktur der Verbindung m/z 367 konnte im Anschluss über eine Reaktion aus Hydroxypinonsäure mit Pinsäure bestätigt werden. Die Identifizierung der Esterverbindung des α-Pinen-SOA erfolgte ebenfalls mit Hilfe von LC-MSn-Messungen.rnDie bisher diskutierten Ergebnisse, sowie die meisten in der Literatur beschriebenen Studien befassen sich jedoch mit einzelnen Vorläuferverbindungen, im Gegensatz zu den komplexen SOA-Proben aus den Emissionen der Vegetation. Im Rahmen einer Messkampagne am Forschungszentrum Jülich erfolgte eine massenspektrometrische Charakterisierung (online-APCI-MS) des SOAs aus direkten VOC-Emissionen von Pflanzen. Durch einen Vergleich der Produktverteilung dieser erhalten online-Massenspektren mit denen aus den Reaktionen einzelner VOCs, konnten Aussagen über die in den Reaktionen umgesetzten VOCs gemacht werden. Es konnte gezeigt werden, dass in stressbedingten Situationen die untersuchten Exemplare der Betula pendula (Birke) hauptsächlich Sesquiterpene, Picea abies (Fichte) eher Monoterpene und Eucalyptus (Eukalyptus) sowohl Sesquiterpene als auch Monoterpene emittieren. Um die atmosphärischen Prozesse, die zur Bildung der Produkte im SOA führen vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diese Arbeit präsentiert Forschungsergebnisse der beiden wissenschaftlichen Projekte POLYSOA und OOMPH. Für das POLYSOA-Projekt, welches sich mit der Oligomerbildung in sekundären organischen Aerosolen befasst, wurden zwei Dicarbonylverbindungen bezüglich ihres Oligomerisationsverhaltens untersucht. Hierfür wurden zunächst verschiedene Herstellungsmethoden für die reinen, wasserfreien Monomere Glyoxal (Ethandial) und Methylglyoxal (2-Oxopropanal) erprobt. Diese wurden mit Reinstwasser umgesetzt und die Reaktionsprodukte massenspektrometrisch mittels Direktinfusion in ein ESI-MS untersucht. Es wurde bei den wässrigen Lösungen von Glyoxal eine starke Tendenz zur Oligomerbildung beobachtet. Die Zusammensetzung dieser Acetal-Oligomere wurde durch MS2-Experimente analysiert. Methylglyoxal bildete bei den durchgeführten Experimenten ebenfalls bei der Reaktion mit Wasser Oligomere. Zum Ausschluss, dass es sich bei den mittels ESI-MS gemessenen Oligomer-Ionen nicht um Ionenquellenartefakte handelte, wurde eine HPLC-Trennung vorgenommen. Diese Experimente ergaben, dass es sich nicht um Artefakte handelt. Als Teil des OOMPH-Projekts wurden mit einem Aerodyne-HRToF-AMS Messungen an Bord des französischem Forschungsschiffes RV Marion Dufresne durchgeführt. Um detaillierte Informationen über die hierbei im organischen Aerosol enthaltenen Moleküle zu erhalten wurde eine neue Methode entwickelt. Es wurde eine Ionenliste erstellt, die mögliche Fragment-Ionen sowie deren exakte Masse enthält. Reihen von homologen Ionen wurden in Gruppen zusammengefasst. Ein selbstentwickelter Algorithmus berechnet die Signalanteile der einzelnen Ionen aus der Ionenliste am Gesamtsignal. Die erhaltenen einzelnen Signalanteile wurden entsprechend den Ionengruppen zusammengefasst. Hieraus können Informationen über die im Aerosol enthaltenen Molekülbausteine erhalten werden. Im OOMPH-Datensatz konnten so Aerosole verschiedener chemischer Zusammensetzung unterschieden werden. Ein Rückschluss auf einzelne Moleküle kann jedoch nicht gezogen werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosolpartikel beeinflussen das Klima durch Streuung und Absorption von Strahlung sowie als Nukleations-Kerne für Wolkentröpfchen und Eiskristalle. Darüber hinaus haben Aerosole einen starken Einfluss auf die Luftverschmutzung und die öffentliche Gesundheit. Gas-Partikel-Wechselwirkunge sind wichtige Prozesse, weil sie die physikalischen und chemischen Eigenschaften von Aerosolen wie Toxizität, Reaktivität, Hygroskopizität und optische Eigenschaften beeinflussen. Durch einen Mangel an experimentellen Daten und universellen Modellformalismen sind jedoch die Mechanismen und die Kinetik der Gasaufnahme und der chemischen Transformation organischer Aerosolpartikel unzureichend erfasst. Sowohl die chemische Transformation als auch die negativen gesundheitlichen Auswirkungen von toxischen und allergenen Aerosolpartikeln, wie Ruß, polyzyklische aromatische Kohlenwasserstoffe (PAK) und Proteine, sind bislang nicht gut verstanden.rn Kinetische Fluss-Modelle für Aerosoloberflächen- und Partikelbulk-Chemie wurden auf Basis des Pöschl-Rudich-Ammann-Formalismus für Gas-Partikel-Wechselwirkungen entwickelt. Zunächst wurde das kinetische Doppelschicht-Oberflächenmodell K2-SURF entwickelt, welches den Abbau von PAK auf Aerosolpartikeln in Gegenwart von Ozon, Stickstoffdioxid, Wasserdampf, Hydroxyl- und Nitrat-Radikalen beschreibt. Kompetitive Adsorption und chemische Transformation der Oberfläche führen zu einer stark nicht-linearen Abhängigkeit der Ozon-Aufnahme bezüglich Gaszusammensetzung. Unter atmosphärischen Bedingungen reicht die chemische Lebensdauer von PAK von wenigen Minuten auf Ruß, über mehrere Stunden auf organischen und anorganischen Feststoffen bis hin zu Tagen auf flüssigen Partikeln. rn Anschließend wurde das kinetische Mehrschichtenmodell KM-SUB entwickelt um die chemische Transformation organischer Aerosolpartikel zu beschreiben. KM-SUB ist in der Lage, Transportprozesse und chemische Reaktionen an der Oberfläche und im Bulk von Aerosol-partikeln explizit aufzulösen. Es erforder im Gegensatz zu früheren Modellen keine vereinfachenden Annahmen über stationäre Zustände und radiale Durchmischung. In Kombination mit Literaturdaten und neuen experimentellen Ergebnissen wurde KM-SUB eingesetzt, um die Effekte von Grenzflächen- und Bulk-Transportprozessen auf die Ozonolyse und Nitrierung von Protein-Makromolekülen, Ölsäure, und verwandten organischen Ver¬bin-dungen aufzuklären. Die in dieser Studie entwickelten kinetischen Modelle sollen als Basis für die Entwicklung eines detaillierten Mechanismus für Aerosolchemie dienen sowie für das Herleiten von vereinfachten, jedoch realistischen Parametrisierungen für großskalige globale Atmosphären- und Klima-Modelle. rn Die in dieser Studie durchgeführten Experimente und Modellrechnungen liefern Beweise für die Bildung langlebiger reaktiver Sauerstoff-Intermediate (ROI) in der heterogenen Reaktion von Ozon mit Aerosolpartikeln. Die chemische Lebensdauer dieser Zwischenformen beträgt mehr als 100 s, deutlich länger als die Oberflächen-Verweilzeit von molekularem O3 (~10-9 s). Die ROIs erklären scheinbare Diskrepanzen zwischen früheren quantenmechanischen Berechnungen und kinetischen Experimenten. Sie spielen eine Schlüsselrolle in der chemischen Transformation sowie in den negativen Gesundheitseffekten von toxischen und allergenen Feinstaubkomponenten, wie Ruß, PAK und Proteine. ROIs sind vermutlich auch an der Zersetzung von Ozon auf mineralischem Staub und an der Bildung sowie am Wachstum von sekundären organischen Aerosolen beteiligt. Darüber hinaus bilden ROIs eine Verbindung zwischen atmosphärischen und biosphärischen Mehrphasenprozessen (chemische und biologische Alterung).rn Organische Verbindungen können als amorpher Feststoff oder in einem halbfesten Zustand vorliegen, der die Geschwindigkeit von heterogenen Reaktionenen und Mehrphasenprozessen in Aerosolen beeinflusst. Strömungsrohr-Experimente zeigen, dass die Ozonaufnahme und die oxidative Alterung von amorphen Proteinen durch Bulk-Diffusion kinetisch limitiert sind. Die reaktive Gasaufnahme zeigt eine deutliche Zunahme mit zunehmender Luftfeuchte, was durch eine Verringerung der Viskosität zu erklären ist, bedingt durch einen Phasenübergang der amorphen organischen Matrix von einem glasartigen zu einem halbfesten Zustand (feuchtigkeitsinduzierter Phasenübergang). Die chemische Lebensdauer reaktiver Verbindungen in organischen Partikeln kann von Sekunden bis zu Tagen ansteigen, da die Diffusionsrate in der halbfesten Phase bei niedriger Temperatur oder geringer Luftfeuchte um Größenordnungen absinken kann. Die Ergebnisse dieser Studie zeigen wie halbfeste Phasen die Auswirkung organischeer Aerosole auf Luftqualität, Gesundheit und Klima beeinflussen können. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims at a comprehensive understanding of the effects of aerosol-cloud interactions and their effects on cloud properties and climate using the chemistry-climate model EMAC. In this study, CCN activation is regarded as the dominant driver in aerosol-cloud feedback loops in warm clouds. The CCN activation is calculated prognostically using two different cloud droplet nucleation parameterizations, the STN and HYB CDN schemes. Both CDN schemes account for size and chemistry effects on the droplet formation based on the same aerosol properties. The calculation of the solute effect (hygroscopicity) is the main difference between the CDN schemes. The kappa-method is for the first time incorporated into Abdul-Razzak and Ghan activation scheme (ARG) to calculate hygroscopicity and critical supersaturation of aerosols (HYB), and the performance of the modied scheme is compared with the osmotic coefficient model (STN), which is the standard in the ARG scheme. Reference simulations (REF) with the prescribed cloud droplet number concentration have also been carried out in order to understand the effects of aerosol-cloud feedbacks. In addition, since the calculated cloud coverage is an important determinant of cloud radiative effects and is influencing the nucleation process two cloud cover parameterizations (i.e., a relative humidity threshold; RH-CLC and a statistical cloud cover scheme; ST-CLC) have been examined together with the CDN schemes, and their effects on the simulated cloud properties and relevant climate parameters have been investigated. The distinct cloud droplet spectra show strong sensitivity to aerosol composition effects on cloud droplet formation in all particle sizes, especially for the Aitken mode. As Aitken particles are the major component of the total aerosol number concentration and CCN, and are most sensitive to aerosol chemical composition effect (solute effect) on droplet formation, the activation of Aitken particles strongly contribute to total cloud droplet formation and thereby providing different cloud droplet spectra. These different spectra influence cloud structure, cloud properties, and climate, and show regionally varying sensitivity to meteorological and geographical condition as well as the spatiotemporal aerosol properties (i.e., particle size, number, and composition). The changes responding to different CDN schemes are more pronounced at lower altitudes than higher altitudes. Among regions, the subarctic regions show the strongest changes, as the lower surface temperature amplifies the effects of the activated aerosols; in contrast, the Sahara desert, where is an extremely dry area, is less influenced by changes in CCN number concentration. The aerosol-cloud coupling effects have been examined by comparing the prognostic CDN simulations (STN, HYB) with the reference simulation (REF). Most pronounced effects are found in the cloud droplet number concentration, cloud water distribution, and cloud radiative effect. The aerosol-cloud coupling generally increases cloud droplet number concentration; this decreases the efficiency of the formation of weak stratiform precipitation, and increases the cloud water loading. These large-scale changes lead to larger cloud cover and longer cloud lifetime, and contribute to high optical thickness and strong cloud cooling effects. This cools the Earth's surface, increases atmospheric stability, and reduces convective activity. These changes corresponding to aerosol-cloud feedbacks are also differently simulated depending on the cloud cover scheme. The ST-CLC scheme is more sensitive to aerosol-cloud coupling, since this scheme uses a tighter linkage of local dynamics and cloud water distributions in cloud formation process than the RH-CLC scheme. For the calculated total cloud cover, the RH-CLC scheme simulates relatively similar pattern to observations than the ST-CLC scheme does, but the overall properties (e.g., total cloud cover, cloud water content) in the RH simulations are overestimated, particularly over ocean. This is mainly originated from the difference in simulated skewness in each scheme: the RH simulations calculate negatively skewed distributions of cloud cover and relevant cloud water, which is similar to that of the observations, while the ST simulations yield positively skewed distributions resulting in lower mean values than the RH-CLC scheme does. The underestimation of total cloud cover over ocean, particularly over the intertropical convergence zone (ITCZ) relates to systematic defficiency of the prognostic calculation of skewness in the current set-ups of the ST-CLC scheme.rnOverall, the current EMAC model set-ups perform better over continents for all combinations of the cloud droplet nucleation and cloud cover schemes. To consider aerosol-cloud feedbacks, the HYB scheme is a better method for predicting cloud and climate parameters for both cloud cover schemes than the STN scheme. The RH-CLC scheme offers a better simulation of total cloud cover and the relevant parameters with the HYB scheme and single-moment microphysics (REF) than the ST-CLC does, but is not very sensitive to aerosol-cloud interactions.