7 resultados para Euler number, Irreducible symplectic manifold, Lagrangian fibration, Moduli space

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wir berechnen die Eulerzahl der 10-dimensionalen exzeptionellen irreduziblen symplektischen Mannigfaltigkeit, die von O Grady konstruiert wurde. Die Idee besteht darin, zunächst eine Lagrangefaserung zu konstruieren und dann die Eulerzahlen der Fasern zu berechnen. Es stellt sich heraus, dass fast alle Fasern die Eulerzahl 0 haben, und deswegen reduziert sich das Problem auf die Berechnung der Eulerzahlen der übrigen Fasern. Diese Fasern sind Modulräume von halbstabilen Garben auf singulären Kurven. Der Hauptteil dieser Dissertation ist der Berechnung der Eulerzahlen dieser Modulräume gewidmet. Diese Resultate sind von unabhängigem Interesse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the deformation theory of pairs of an irreducible symplectic manifold X together with a Lagrangian subvariety Y in X, where the focus is on singular Lagrangian subvarieties. Among other things, Voisin's results [Voi92] are generalized to the case of simple normal crossing subvarieties; partial results are also obtained for more complicated singularities.rnAs done in Voisin's article, we link the codimension of the subspace of the universal deformation space of X parametrizing those deformations where Y persists, to the rank of a certain map in cohomology. This enables us in some concrete cases to actually calculate or at least estimate the codimension of this particular subspace. In these cases the Lagrangian subvarieties in question occur as fibers or fiber components of a given Lagrangian fibration f : X --> B. We discuss examples and the question of how our results might help to understand some aspects of Lagrangian fibrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ich untersuche die nicht bereits durch die Arbeit "Singular symplectic moduli spaces" von Kaledin, Lehn und Sorger (Invent. Math. 164 (2006), no. 3) abgedeckten Fälle von Modulräumen halbstabiler Garben auf projektiven K3-Flächen - die Fälle mit Mukai-Vektor (0,c,0) sowie die Modulräume zu nichtgenerischen amplen Divisoren - hinsichtlich der möglichen Konstruktion neuer Beispiele von kompakten irreduziblen symplektischen Mannigfaltigkeiten. Ich stelle einen Zusammenhang zu den bereits untersuchten Modulräumen und Verallgemeinerungen derselben her und erweitere bekannte Ergebnisse auf alle offenen Fälle von Garben vom Rang 0 und viele Fälle von Garben von positivem Rang. Insbesondere kann in diesen Fällen die Existenz neuer Beispiele von kompakten irreduziblen symplektischen Mannigfaltigkeiten, die birational über Komponenten des Modulraums liegen, ausgeschlossen werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the moduli space M_Ө(X) of Ө-stable (G,h)-constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion and the moduli space of Ө-stable G-constellations for finite groups G introduced by Craw and Ishii. Our construction of a morphism M_Ө(X) → X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment map of an action of Sl_2 on (C²)⁶ as one of the first examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If the generic fibre f−1(c) of a Lagrangian fibration f : X → B on a complex Poisson– variety X is smooth, compact, and connected, it is isomorphic to the compactification of a complex abelian Lie–group. For affine Lagrangian fibres it is not clear what the structure of the fibre is. Adler and van Moerbeke developed a strategy to prove that the generic fibre of a Lagrangian fibration is isomorphic to the affine part of an abelian variety.rnWe extend their strategy to verify that the generic fibre of a given Lagrangian fibration is the affine part of a (C∗)r–extension of an abelian variety. This strategy turned out to be successful for all examples we studied. Additionally we studied examples of Lagrangian fibrations that have the affine part of a ramified cyclic cover of an abelian variety as generic fibre. We obtained an embedding in a Lagrangian fibration that has the affine part of a C∗–extension of an abelian variety as generic fibre. This embedding is not an embedding in the category of Lagrangian fibrations. The C∗–quotient of the new Lagrangian fibration defines in a natural way a deformation of the cyclic quotient of the original Lagrangian fibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we give a definition of the term logarithmically symplectic variety; to be precise, we distinguish even two types of such varieties. The general type is a triple $(f,nabla,omega)$ comprising a log smooth morphism $fcolon Xtomathrm{Spec}kappa$ of log schemes together with a flat log connection $nablacolon LtoOmega^1_fotimes L$ and a ($nabla$-closed) log symplectic form $omegainGamma(X,Omega^2_fotimes L)$. We define the functor of log Artin rings of log smooth deformations of such varieties $(f,nabla,omega)$ and calculate its obstruction theory, which turns out to be given by the vector spaces $H^i(X,B^bullet_{(f,nabla)}(omega))$, $i=0,1,2$. Here $B^bullet_{(f,nabla)}(omega)$ is the class of a certain complex of $mathcal{O}_X$-modules in the derived category $mathrm{D}(X/kappa)$ associated to the log symplectic form $omega$. The main results state that under certain conditions a log symplectic variety can, by a flat deformation, be smoothed to a symplectic variety in the usual sense. This may provide a new approach to the construction of new examples of irreducible symplectic manifolds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intersection theory on moduli spaces has lead to immense progress in certain areas of enumerative geometry. For some important areas, most notably counting stable maps and counting stable sheaves, it is important to work with a virtual fundamental class instead of the usual fundamental class of the moduli space. The crucial prerequisite for the existence of such a class is a two-term complex controlling deformations of the moduli space. Kontsevich conjectured in 1994 that there should exist derived version of spaces with this specific property. Another hint at the existence of these spaces comes from derived algebraic geometry. It is expected that for every pair of a space and a complex controlling deformations of the space their exists, under some additional hypothesis, a derived version of the space having the chosen complex as cotangent complex. In this thesis one version of these additional hypothesis is identified. We then show that every space admitting a two-term complex controlling deformations satisfies these hypothesis, and we finally construct the derived spaces.