16 resultados para Computer Algebra System
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C++ programming language. This system, which is now also in use for other projects besides xloops, is the main focus of this thesis. The implementation of GiNaC as a C++ library sets it apart from other algebraic systems. Our results prove that a highly efficient symbolic manipulator can be designed in an object-oriented way, and that having a very fine granularity of objects is also feasible. The xloops-related parts of this work consist of a new implementation, based on GiNaC, of functions for calculating one-loop Feynman integrals that already existed in the original xloops program, as well as the addition of supplementary modules belonging to the interface between the library of integral functions and the diagram generator.
Resumo:
In der vorliegenden Arbeit werden Photopionproduktion (PPP) und Elektropionproduktion (EPP) im Rahmen der manifest lorentzinvarianten baryonischen chiralen Störungstheorie untersucht. Dabei werden zwei verschiedene Ansätze verfolgt. Zum einen wird eine Rechnung auf Einschleifenniveau bis zur chiralen Ordnung O(q^4) mit Pionen und Nukleonen als Freiheitsgrade durchgeführt, um die Energieabhängigkeit der Reaktionen über einen möglichst großen Bereich zu beschreiben. Um die Abhängigkeit von der Photonvirtualität in der EPP zu verbessern, werden zum anderen in einer zweiten Rechnung Vektormesonen in die Theorie einbezogen. Diese Rechnung wird bis zur chiralen Ordnung O(q^3) auf Einschleifenniveau durchgeführt. rnrnVon den vier physikalischen Prozessen in PPP und EPP sind nur drei experimentell zugänglich. Untersucht werden diese Reaktionen an mehreren verschiedenen Anlagen, z.B. in Mainz, Bonn oder Saskatoon. Die dort gewonnenen Daten werden hier verwendet, um die Grenzen der chiralen Störungstheorie auszuloten. rnrnDiese Arbeit stellt die erste, vollständige, manifest lorentzinvariante Rechnung in O(q^4) für PPP und EPP, und die erste jemals durchgeführte Rechnung mit Vektormesonen als Freiheitsgrade für diesen Prozess, dar. Neben der Berechnung der physikalischen Observablen wird auch eine Partialwellenzerlegung durchgeführt und die wichtigsten Multipole untersucht. Diese lassen sich aus den gewonnenen Amplituden extrahieren und bieten eine gute Möglichkeit das Nukleon und Resonanzen zu untersuchen. rnrnUm das Matrixelement für die Prozesse berechnen zu können, wurden verschiedene Routinen für das Computeralgebrasystem Mathematica entwickelt, da die Anzahl der zu bestimmenden Diagramme sehr groß ist. Für die Multipolzerlegung werden zwei verschiedene Programme verwendet. Zum einen das bereits existierende Programm XMAID, welches für diese Arbeit entsprechend modifiziert wurde. Zum anderen wurden vergleichbare Routinen für Mathematica entwickelt. Am Ende der Analysen werden die verschiedenen Rechnungen bezüglich ihrer Anwendbarkeit auf PPP und EPP verglichen.
Resumo:
Über viele Jahre hinweg wurden wieder und wieder Argumente angeführt, die diskreten Räumen gegenüber kontinuierlichen Räumen eine fundamentalere Rolle zusprechen. Unser Zugangzur diskreten Welt wird durch neuere Überlegungen der Nichtkommutativen Geometrie (NKG) bestimmt. Seit ca. 15Jahren gibt es Anstrengungen und auch Fortschritte, Physikmit Hilfe von Nichtkommutativer Geometrie besser zuverstehen. Nur eine von vielen Möglichkeiten ist dieReformulierung des Standardmodells derElementarteilchenphysik. Unter anderem gelingt es, auch denHiggs-Mechanismus geometrisch zu beschreiben. Das Higgs-Feld wird in der NKG in Form eines Zusammenhangs auf einer zweielementigen Menge beschrieben. In der Arbeit werden verschiedene Ziele erreicht:Quantisierung einer nulldimensionalen ,,Raum-Zeit'', konsistente Diskretisierungf'ur Modelle im nichtkommutativen Rahmen.Yang-Mills-Theorien auf einem Punkt mit deformiertemHiggs-Potenzial. Erweiterung auf eine ,,echte''Zwei-Punkte-Raum-Zeit, Abzählen von Feynman-Graphen in einer nulldimensionalen Theorie, Feynman-Regeln. Eine besondere Rolle werden Termini, die in derQuantenfeldtheorie ihren Ursprung haben, gewidmet. In diesemRahmen werden Begriffe frei von Komplikationen diskutiert,die durch etwaige Divergenzen oder Schwierigkeitentechnischer Natur verursacht werden könnten.Eichfixierungen, Geistbeiträge, Slavnov-Taylor-Identität undRenormierung. Iteratives Lösungsverfahren derDyson-Schwinger-Gleichung mit Computeralgebra-Unterstützung,die Renormierungsprozedur berücksichtigt.
Resumo:
1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten. Die maximale Anzahl mu^n(d) von Singularitäten auf einer Hyperfläche vom Grad d im P^n(C) ist nur in sehr wenigen Fällen bekannt, im P^3(C) beispielsweise nur für d<=6. Abgesehen von solchen Ausnahmen existieren nur obere und untere Schranken. 2. Teil: Neue Konstruktionen. Für kleine Grade d ist es oft möglich, bessere Resultate zu erhalten als jene, die durch allgemeine Schranken gegeben sind. In dieser Arbeit beschreiben wir einige algorithmische Ansätze hierfür, von denen einer Computer Algebra in Charakteristik 0 benutzt. Unsere anderen algorithmischen Methoden basieren auf einer Suche über endlichen Körpern. Das Liften der so experimentell gefundenen Hyperflächen durch Ausnutzung ihrer Geometrie oder Arithmetik liefert beispielsweise eine Fläche vom Grad 7 mit $99$ reellen gewöhnlichen Doppelpunkten und eine Fläche vom Grad 9 mit 226 gewöhnlichen Doppelpunkten. Diese Konstruktionen liefern die ersten unteren Schranken für mu^3(d) für ungeraden Grad d>5, die die allgemeine Schranke übertreffen. Unser Algorithmus hat außerdem das Potential, auf viele weitere Probleme der algebraischen Geometrie angewendet zu werden. Neben diesen algorithmischen Methoden beschreiben wir eine Konstruktion von Hyperflächen vom Grad d im P^n mit vielen A_j-Singularitäten, j>=2. Diese Beispiele, deren Existenz wir mit Hilfe der Theorie der Dessins d'Enfants beweisen, übertreffen die bekannten unteren Schranken in den meisten Fällen und ergeben insbesondere neue asymptotische untere Schranken für j>=2, n>=3. 3. Teil: Visualisierung. Wir beschließen unsere Arbeit mit einer Anwendung unserer neuen Visualisierungs-Software surfex, die die Stärken mehrerer existierender Programme bündelt, auf die Konstruktion affiner Gleichungen aller 45 topologischen Typen reeller kubischer Flächen.
Resumo:
This work presents algorithms for the calculation of the electrostatic interaction in partially periodic systems. The framework for these algorithms is provided by the simulation package ESPResSo, of which the author was one of the main developers. The prominent features of the program are listed and the internal structure is described. In the following, algorithms for the calculation of the Coulomb sum in three dimensionally periodic systems are described. These methods are the foundations for the algorithms for partially periodic systems presented in this work. Starting from the MMM2D method for systems with one non-periodic coordinate, the ELC method for these systems is developed. This method consists of a correction term which allows to use methods for three dimensional periodicity also for the case of two periodic coordinates. The computation time of this correction term is neglible for large numbers of particles. The performance of MMM2D and ELC are demonstrated by results from the implementations contained in ESPResSo. It is also discussed, how different dielectric constants inside and outside of the simulation box can be realized. For systems with one periodic coordinate, the MMM1D method is derived from the MMM2D method. This method is applied to the problem of the attraction of like-charged rods in the presence of counterions, and results of the strong coupling theory for the equilibrium distance of the rods at infinite counterion-coupling are checked against results from computer simulations. The degree of agreement between the simulations at finite coupling and the theory can be characterized by a single parameter gamma_RB. In the special case of T=0, one finds under certain circumstances flat configurations, in which all charges are located in the rod-rod plane. The energetically optimal configuration and its stability are determined analytically, which depends on only one parameter gamma_z, similar to gamma_RB. These findings are in good agreement with results from computer simulations.
Resumo:
In dieser Arbeit wurden die Phasenübergänge einer einzelnen Polymerkette mit Hilfe der Monte Carlo Methode untersucht. Das Bondfluktuationsmodell wurde zur Simulation benutzt, wobei ein attraktives Kastenpotential zwischen allen Monomeren der Polymerkette gewirkt hat. Drei Arten von Bewegungen sind eingeführt worden, um die Polymerkette richtig zu relaxieren. Diese sind die Hüpfbewegung, die Reptationsbewegung und die Pivotbewegung. Um die Volumenausschlußwechselwirkung zu prüfen und um die Anzahl der Nachbarn jedes Monomers zu bestimmen ist ein hierarchischer Suchalgorithmus eingeführt worden. Die Zustandsdichte des Modells ist mittels des Wang-Landau Algorithmus bestimmt worden. Damit sind thermodynamische Größen berechnet worden, um die Phasenübergänge der einzelnen Polymerkette zu studieren. Wir haben zuerst eine freie Polymerkette untersucht. Der Knäuel-Kügelchen Übergang zeigt sich als ein kontinuierlicher Übergang, bei dem der Knäuel zum Kügelchen zusammenfällt. Der Kügelchen-Kügelchen Übergang bei niedrigeren Temperaturen ist ein Phasenübergang der ersten Ordnung, mit einer Koexistenz des flüssigen und festen Kügelchens, das eine kristalline Struktur hat. Im thermodynamischen Limes sind die Übergangstemperaturen identisch. Das entspricht einem Verschwinden der flüssigen Phase. In zwei Dimensionen zeigt das Modell einen kontinuierlichen Knäuel-Kügelchen Übergang mit einer lokal geordneten Struktur. Wir haben ferner einen Polymermushroom, das ist eine verankerte Polymerkette, zwischen zwei repulsiven Wänden im Abstand D untersucht. Das Phasenverhalten der Polymerkette zeigt einen dimensionalen crossover. Sowohl die Verankerung als auch die Beschränkung fördern den Knäuel-Kügelchen Übergang, wobei es eine Symmetriebrechung gibt, da die Ausdehnung der Polymerkette parallel zu den Wänden schneller schrumpft als die senkrecht zu den Wänden. Die Beschränkung hindert den Kügelchen-Kügelchen Übergang, wobei die Verankerung keinen Einfluss zu haben scheint. Die Übergangstemperaturen im thermodynamischen Limes sind wiederum identisch im Rahmen des Fehlers. Die spezifische Wärme des gleichen Modells aber mit einem abstoßendem Kastenpotential zeigt eine Schottky Anomalie, typisch für ein Zwei-Niveau System.
Resumo:
Monte Carlo simulations are used to study the effect of confinement on a crystal of point particles interacting with an inverse power law potential in d=2 dimensions. This system can describe colloidal particles at the air-water interface, a model system for experimental study of two-dimensional melting. It is shown that the state of the system (a strip of width D) depends very sensitively on the precise boundary conditions at the two ``walls'' providing the confinement. If one uses a corrugated boundary commensurate with the order of the bulk triangular crystalline structure, both orientational order and positional order is enhanced, and such surface-induced order persists near the boundaries also at temperatures where the system in the bulk is in its fluid state. However, using smooth repulsive boundaries as walls providing the confinement, only the orientational order is enhanced, but positional (quasi-) long range order is destroyed: The mean-square displacement of two particles n lattice parameters apart in the y-direction along the walls then crosses over from the logarithmic increase (characteristic for $d=2$) to a linear increase (characteristic for d=1). The strip then exhibits a vanishing shear modulus. These results are interpreted in terms of a phenomenological harmonic theory. Also the effect of incommensurability of the strip width D with the triangular lattice structure is discussed, and a comparison with surface effects on phase transitions in simple Ising- and XY-models is made
Resumo:
Tiefherd-Beben, die im oberen Erdmantel in einer Tiefe von ca. 400 km auftreten, werden gewöhnlich mit dem in gleicher Tiefe auftretenden druckabhängigen, polymorphen Phasenübergang von Olivine (α-Phase) zu Spinel (β-Phase) in Verbindung gebracht. Es ist jedoch nach wie vor unklar, wie der Phasenübergang mit dem mechanischen Versagen des Mantelmaterials zusammenhängt. Zur Zeit werden im Wesentlichen zwei Modelle diskutiert, die entweder Mikrostrukturen, die durch den Phasenübergang entstehen, oder aber die rheologischen Veränderungen des Mantelgesteins durch den Phasenübergang dafür verantwortlich machen. Dabei sind Untersuchungen der Olivin→Spinel Umwandlung durch die Unzugänglichkeit des natürlichen Materials vollständig auf theoretische Überlegungen sowie Hochdruck-Experimente und Numerische Simulationen beschränkt. Das zentrale Thema dieser Dissertation war es, ein funktionierendes Computermodell zur Simulation der Mikrostrukturen zu entwickeln, die durch den Phasenübergang entstehen. Des Weiteren wurde das Computer Modell angewandt um die mikrostrukturelle Entwicklung von Spinelkörnern und die Kontrollparameter zu untersuchen. Die Arbeit ist daher in zwei Teile unterteilt: Der erste Teil (Kap. 2 und 3) behandelt die physikalischen Gesetzmäßigkeiten und die prinzipielle Funktionsweise des Computer Modells, das auf der Kombination von Gleichungen zur Errechnung der kinetischen Reaktionsgeschwindigkeit mit Gesetzen der Nichtgleichgewichtsthermodynamik unter nicht-hydostatischen Bedingungen beruht. Das Computermodell erweitert ein Federnetzwerk der Software latte aus dem Programmpaket elle. Der wichtigste Parameter ist dabei die Normalspannung auf der Kornoberfläche von Spinel. Darüber hinaus berücksichtigt das Programm die Latenzwärme der Reaktion, die Oberflächenenergie und die geringe Viskosität von Mantelmaterial als weitere wesentliche Parameter in der Berechnung der Reaktionskinetic. Das Wachstumsverhalten und die fraktale Dimension von errechneten Spinelkörnern ist dabei in guter Übereinstimmung mit Spinelstrukturen aus Hochdruckexperimenten. Im zweiten Teil der Arbeit wird das Computermodell angewandt, um die Entwicklung der Oberflächenstruktur von Spinelkörnern unter verschiedenen Bedigungen zu eruieren. Die sogenannte ’anticrack theory of faulting’, die den katastrophalen Verlauf der Olivine→Spinel Umwandlung in olivinhaltigem Material unter differentieller Spannung durch Spannungskonzentrationen erklärt, wurde anhand des Computermodells untersucht. Der entsprechende Mechanismus konnte dabei nicht bestätigt werden. Stattdessen können Oberflächenstrukturen, die Ähnlichkeiten zu Anticracks aufweisen, durch Unreinheiten des Materials erklärt werden (Kap. 4). Eine Reihe von Simulationen wurde der Herleitung der wichtigsten Kontrollparameter der Reaktion in monomineralischem Olivin gewidmet (Kap. 5 and Kap. 6). Als wichtigste Einflüsse auf die Kornform von Spinel stellten sich dabei die Hauptnormalspannungen auf dem System sowie Heterogenitäten im Wirtsminerals und die Viskosität heraus. Im weiteren Verlauf wurden die Nukleierung und das Wachstum von Spinel in polymineralischen Mineralparagenesen untersucht (Kap. 7). Die Reaktionsgeschwindigkeit der Olivine→Spinel Umwandlung und die Entwicklung von Spinelnetzwerken und Clustern wird durch die Gegenwart nicht-reaktiver Minerale wie Granat oder Pyroxen erheblich beschleunigt. Die Bildung von Spinelnetzwerken hat das Potential, die mechanischen Eigenschaften von Mantelgestein erheblich zu beeinflussen, sei es durch die Bildung potentieller Scherzonen oder durch Gerüstbildung. Dieser Lokalisierungprozess des Spinelwachstums in Mantelgesteinen kann daher ein neues Erklärungsmuster für Tiefbeben darstellen.
Resumo:
Im Forschungsgebiet der Künstlichen Intelligenz, insbesondere im Bereich des maschinellen Lernens, hat sich eine ganze Reihe von Verfahren etabliert, die von biologischen Vorbildern inspiriert sind. Die prominentesten Vertreter derartiger Verfahren sind zum einen Evolutionäre Algorithmen, zum anderen Künstliche Neuronale Netze. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Systems zum maschinellen Lernen, das Charakteristika beider Paradigmen in sich vereint: Das Hybride Lernende Klassifizierende System (HCS) wird basierend auf dem reellwertig kodierten eXtended Learning Classifier System (XCS), das als Lernmechanismus einen Genetischen Algorithmus enthält, und dem Wachsenden Neuralen Gas (GNG) entwickelt. Wie das XCS evolviert auch das HCS mit Hilfe eines Genetischen Algorithmus eine Population von Klassifizierern - das sind Regeln der Form [WENN Bedingung DANN Aktion], wobei die Bedingung angibt, in welchem Bereich des Zustandsraumes eines Lernproblems ein Klassifizierer anwendbar ist. Beim XCS spezifiziert die Bedingung in der Regel einen achsenparallelen Hyperquader, was oftmals keine angemessene Unterteilung des Zustandsraumes erlaubt. Beim HCS hingegen werden die Bedingungen der Klassifizierer durch Gewichtsvektoren beschrieben, wie die Neuronen des GNG sie besitzen. Jeder Klassifizierer ist anwendbar in seiner Zelle der durch die Population des HCS induzierten Voronoizerlegung des Zustandsraumes, dieser kann also flexibler unterteilt werden als beim XCS. Die Verwendung von Gewichtsvektoren ermöglicht ferner, einen vom Neuronenadaptationsverfahren des GNG abgeleiteten Mechanismus als zweites Lernverfahren neben dem Genetischen Algorithmus einzusetzen. Während das Lernen beim XCS rein evolutionär erfolgt, also nur durch Erzeugen neuer Klassifizierer, ermöglicht dies dem HCS, bereits vorhandene Klassifizierer anzupassen und zu verbessern. Zur Evaluation des HCS werden mit diesem verschiedene Lern-Experimente durchgeführt. Die Leistungsfähigkeit des Ansatzes wird in einer Reihe von Lernproblemen aus den Bereichen der Klassifikation, der Funktionsapproximation und des Lernens von Aktionen in einer interaktiven Lernumgebung unter Beweis gestellt.
Resumo:
CIGS-Dünnschichtsolarzellen verbinden hohe Effizienz mit niedrigen Kosten und sind damit eine aussichtsreiche Photovoltaik-Technologie. Das Verständnis des Absorbermaterials CIGS ist allerdings noch lückenhaft und benötigt weitere Forschung. In dieser Dissertation werden Computersimulationen vorgestellt, die erheblich zum besseren Verständnis von CIGS beitragen. Es wurden die beiden Systeme Cu(In,Ga)Se2 und (Cu,In,Vac)Se betrachtet. Die Gesamtenergie der Systeme wurde in Clusterentwicklungen ausgedrückt, die auf der Basis von ab initio Dichtefunktionalrechnungen erstellt wurden. Damit war es möglich Monte Carlo (MC)-Simulationen durchzuführen. Kanonische MC-Simulationen von Cu(In,Ga)Se2 zeigen das temperaturabhängige Verhalten der In-Ga-Verteilung. In der Nähe der Raumtemperatur findet ein Übergang von einer geordneten zu einer ungeordneten Phase statt. Unterhalb separiert das System in CuInSe2 und CuGaSe2. Oberhalb existiert eine gemischte Phase mit inhomogen verteilten In- und Ga-Clustern. Mit steigender Temperatur verkleinern sich die Cluster und die Homogenität nimmt zu. Bei allen Temperaturen, bis hin zur Produktionstemperatur der Solarzellen (¼ 870 K), ist In-reiches CIGS homogener als Ga-reiches CIGS. Das (Cu,In,Vac)Se-System wurde mit kanonischen und großkanonischen MC-Simulationen untersucht. Hier findet sich für das CuIn5Se8-Teilsystem ein Übergang von einer geordneten zu einer ungeordneten Phase bei T0 = 279 K. Großkanonische Simulationen mit vorgegebenen Werten für die chemischen Potentiale von Cu und In wurden verwendet, um die Konzentrations- Landschaft und damit die sich ergebenden Stöchiometrien zu bestimmen. Stabilitätsbereiche wurden für stöchiometrisches CuInSe2 und für die Defektphasen CuIn5Se8 und CuIn3Se5 bei einer Temperatur von 174 K identifiziert. Die Bereiche für die Defektphasen sind bei T = 696 K verschwunden. Die Konzentrations-Landschaft reproduziert auch die leicht Cu-armen Stöchiometrien, die bei Solarzellen mit guten Effizienzen experimentell beobachtet werden. Die Simulationsergebnisse können verwendet werden, um den industriellen CIGS-Produktionspr
Resumo:
Computer-Simulationen von Kolloidalen Fluiden in Beschränkten Geometrien Kolloidale Suspensionen, die einen Phasenübergang aufweisen, zeigen eine Vielfalt an interessanten Effekten, sobald sie auf eine bestimmte Geometrie beschränkt werden, wie zum Beispiel auf zylindrische Poren, sphärische Hohlräume oder auf einen Spalt mit ebenen Wänden. Der Einfluss dieser verschiedenen Geometrietypen sowohl auf das Phasenverhalten als auch auf die Dynamik von Kolloid-Polymer-Mischungen wird mit Hilfe von Computer-Simulationen unter Verwendung des Asakura-Oosawa- Modells, für welches auf Grund der “Depletion”-Kräfte ein Phasenübergang existiert, untersucht. Im Fall von zylindrischen Poren sieht man ein interessantes Phasenverhalten, welches vom eindimensionalen Charakter des Systems hervorgerufen wird. In einer kurzen Pore findet man im Bereich des Phasendiagramms, in dem das System typischerweise entmischt, entweder eine polymerreiche oder eine kolloidreiche Phase vor. Sobald aber die Länge der zylindrischen Pore die typische Korrelationslänge entlang der Zylinderachse überschreitet, bilden sich mehrere quasi-eindimensionale Bereiche der polymerreichen und der kolloidreichen Phase, welche von nun an koexistieren. Diese Untersuchungen helfen das Verhalten von Adsorptionshysteresekurven in entsprechenden Experimenten zu erklären. Wenn das Kolloid-Polymer-Modellsystem auf einen sphärischen Hohlraum eingeschränkt wird, verschiebt sich der Punkt des Phasenübergangs von der polymerreichen zur kolloidreichen Phase. Es wird gezeigt, dass diese Verschiebung direkt von den Benetzungseigenschaften des Systems abhängt, was die Beobachtung von zwei verschiedenen Morphologien bei Phasenkoexistenz ermöglicht – Schalenstrukturen und Strukturen des Janustyps. Im Rahmen der Untersuchung von heterogener Keimbildung von Kristallen innerhalb einer Flüssigkeit wird eine neue Simulationsmethode zur Berechnung von Freien Energien der Grenzfläche zwischen Kristall- bzw. Flüssigkeitsphase undWand präsentiert. Die Resultate für ein System von harten Kugeln und ein System einer Kolloid- Polymer-Mischung werden anschließend zur Bestimmung von Kontaktwinkeln von Kristallkeimen an Wänden verwendet. Die Dynamik der Phasenseparation eines quasi-zweidimensionalen Systems, welche sich nach einem Quench des Systems aus dem homogenen Zustand in den entmischten Zustand ausbildet, wird mit Hilfe von einer mesoskaligen Simulationsmethode (“Multi Particle Collision Dynamics”) untersucht, die sich für eine detaillierte Untersuchung des Einflusses der hydrodynamischen Wechselwirkung eignet. Die Exponenten universeller Potenzgesetze, die das Wachstum der mittleren Domänengröße beschreiben, welche für rein zwei- bzw. dreidimensionale Systeme bekannt sind, können für bestimmte Parameterbereiche nachgewiesen werden. Die unterschiedliche Dynamik senkrecht bzw. parallel zu den Wänden sowie der Einfluss der Randbedingungen für das Lösungsmittel werden untersucht. Es wird gezeigt, dass die daraus resultierende Abschirmung der hydrodynamischen Wechselwirkungsreichweite starke Auswirkungen auf das Wachstum der mittleren Domänengröße hat.
Resumo:
Eine der offenen Fragen der aktuellen Physik ist das Verständnis von Systemen im Nichtgleichgewicht. Im Gegensatz zu der Gleichgewichtsphysik ist in diesem Bereich aktuell kein Formalismus bekannt der ein systematisches Beschreiben der unterschiedlichen Systeme ermöglicht. Um das Verständnis über diese Systeme zu vergrößern werden in dieser Arbeit zwei unterschiedliche Systeme studiert, die unter einem externen Feld ein starkes nichtlineares Verhalten zeigen. Hierbei handelt es sich zum einen um das Verhalten von Teilchen unter dem Einfluss einer extern angelegten Kraft und zum anderen um das Verhalten eines Systems in der Nähe des kritischen Punktes unter Scherung. Das Modellsystem in dem ersten Teil der Arbeit ist eine binäre Yukawa Mischung, die bei tiefen Temperaturen einen Glassübergang zeigt. Dies führt zu einer stark ansteigenden Relaxationszeit des Systems, so dass man auch bei kleinen Kräften relativ schnell ein nichtlineares Verhalten beobachtet. In Abhängigkeit der angelegten konstanten Kraft können in dieser Arbeit drei Regime, mit stark unterschiedlichem Teilchenverhalten, identifiziert werden. In dem zweiten Teil der Arbeit wird das Ising-Modell unter Scherung betrachtet. In der Nähe des kritischen Punkts kommt es in diesem Modell zu einer Beeinflussung der Fluktuationen in dem System durch das angelegte Scherfeld. Dies hat zur Folge, dass das System stark anisotrop wird und man zwei unterschiedliche Korrelationslängen vorfindet, die mit unterschiedlichen Exponenten divergieren. Infolgedessen lässt sich der normale isotrope Formalismus des "finite-size scaling" nicht mehr auf dieses System anwenden. In dieser Arbeit wird gezeigt, wie dieser auf den anisotropen Fall zu verallgemeinern ist und wie damit die kritischen Punkte, sowie die dazu gehörenden kritischen Exponenten berechnet werden können.
Resumo:
In this thesis we are presenting a broadly based computer simulation study of two-dimensional colloidal crystals under different external conditions. In order to fully understand the phenomena which occur when the system is being compressed or when the walls are being sheared, it proved necessary to study also the basic motion of the particles and the diffusion processes which occur in the case without these external forces. In the first part of this thesis we investigate the structural transition in the number of rows which occurs when the crystal is being compressed by placing the structured walls closer together. Previous attempts to locate this transition were impeded by huge hysteresis effects. We were able to determine the transition point with higher precision by applying both the Schmid-Schilling thermodynamic integration method and the phase switch Monte Carlo method in order to determine the free energies. These simulations showed not only that the phase switch method can successfully be applied to systems with a few thousand particles and a soft crystalline structure with a superimposed pattern of defects, but also that this method is way more efficient than a thermodynamic integration when free energy differences are to be calculated. Additionally, the phase switch method enabled us to distinguish between several energetically very similar structures and to determine which one of them was actually stable. Another aspect considered in the first result chapter of this thesis is the ensemble inequivalence which can be observed when the structural transition is studied in the NpT and in the NVT ensemble. The second part of this work deals with the basic motion occurring in colloidal crystals confined by structured walls. Several cases are compared where the walls are placed in different positions, thereby introducing an incommensurability into the crystalline structure. Also the movement of the solitons, which are created in the course of the structural transition, is investigated. Furthermore, we will present results showing that not only the well-known mechanism of vacancies and interstitial particles leads to diffusion in our model system, but that also cooperative ring rotation phenomena occur. In this part and the following we applied Langevin dynamics simulations. In the last chapter of this work we will present results on the effect of shear on the colloidal crystal. The shear was implemented by moving the walls with constant velocity. We have observed shear banding and, depending on the shear velocity, that the inner part of the crystal breaks into several domains with different orientations. At very high shear velocities holes are created in the structure, which originate close to the walls, but also diffuse into the inner part of the crystal.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.
Resumo:
Bandlaufwerke waren bisher die vorherrschende Technologie, um die anfallenden Datenmengen in Archivsystemen zu speichern. Mit Zugriffsmustern, die immer aktiver werden, und Speichermedien wie Festplatten die kostenmäßig aufholen, muss die Architektur vor Speichersystemen zur Archivierung neu überdacht werden. Zuverlässigkeit, Integrität und Haltbarkeit sind die Haupteigenschaften der digitalen Archivierung. Allerdings nimmt auch die Zugriffsgeschwindigkeit einen erhöhten Stellenwert ein, wenn aktive Archive ihre gesamten Inhalte für den direkten Zugriff bereitstellen. Ein band-basiertes System kann die hierfür benötigte Parallelität, Latenz und Durchsatz nicht liefern, was in der Regel durch festplattenbasierte Systeme als Zwischenspeicher kompensiert wird.rnIn dieser Arbeit untersuchen wir die Herausforderungen und Möglichkeiten ein festplattenbasiertes Speichersystem zu entwickeln, das auf eine hohe Zuverlässigkeit und Energieeffizienz zielt und das sich sowohl für aktive als auch für kalte Archivumgebungen eignet. Zuerst analysieren wir die Speichersysteme und Zugriffsmuster eines großen digitalen Archivs und präsentieren damit ein mögliches Einsatzgebiet für unsere Architektur. Daraufhin stellen wir Mechanismen vor um die Zuverlässigkeit einer einzelnen Festplatte zu verbessern und präsentieren sowie evaluieren einen neuen, energieeffizienten, zwei- dimensionalen RAID Ansatz der für „Schreibe ein Mal, lese mehrfach“ Zugriffe optimiert ist. Letztlich stellen wir Protokollierungs- und Zwischenspeichermechanismen vor, die die zugrundeliegenden Ziele unterstützen und evaluieren das RAID System in einer Dateisystemumgebung.