11 resultados para CHEMICAL-SHIFT

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Das Ziel der vorliegenden Arbeit ist die Untersuchung der räumlichen und zeitlichen Aspekte der heterogenen Dynamik in Modellglasbildnern. Dabei wird vor allem die langsame alpha-Relaxationsdynamik oberhalb des Glasüberganges Tg untersucht. Die nukleare Magnetresonanz zeigt ihre einmalige Vielseitigkeit bei der Untersuchung molekularer Dynamik, wenn die angewandten Techniken und Experimente durch Simulationen unterstützt werden. Die räumliche Aspekt dynamischer Heterogenitäten wird untersucht durch ein reduziertes vierdimensionales Spindiffusionsexperiment (4D3CP), ein Experiment, das Reorientierungsraten örtlich korreliert. Eine Simulation dieses Experimentes an einem System harter Kugeln liefert wertvolle Informationen über die Auswertemethode des 4D3CP Experiments. Glycerol und o-terphenyl werden durch das 4D3CP Experiment untersucht. Die erhaltenen Resultate werden mit bereits publizierten Daten des polymeren Glasbildners PVAc verglichen. Während PVAc und o-terphenyl eine Längenskale von 3.7 nm bzw. 2.9 nm aufweisen, ist die Längenskale von Glycerol signifikant kleiner bei 1.1 nm. Ein neues Experiment, welches sensitiv auf Translationsbewegung reagiert, wird vorgestellt. Durch Verwendung eines pi-Impulszuges kann eine separate Evolution unter dem Hamiltonian der dipolaren Kopplung und der chemischen Verschiebungsanisotropie erreicht werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ziel der vorliegenden Arbeit ist die Aufklärung von Struktur und Dynamik komplexer supramolekularer Systeme mittels Festkörper NMR Spektroskopie. Die Untersuchung von pi-pi Wechselwirkungen, welche einen entscheidenden Einfluss auf die strukturellen und dynamischen Eigenschaften supra- molekularer Systeme haben, hilft dabei, die Selbst- organisationsprozesse dieser komplexen Materialien besser zu verstehen. Mit dipolaren 1H-1H and 1H-13C Wiedereinkopplungs NMR Methoden unter schnellem MAS können sowohl 1H chemische Verschiebungen als auch dipolare 1H-1H und 1H-13C Kopplungen untersucht werden, ohne dass eine Isotopenmarkierung erforderlich ist. So erhält man detaillierte Informationen über die Struktur und die Beweglichkeit einzelner Molekül- segmente. In Verbindung mit sogenannten nucleus independent chemical shift (NICS) maps (berechnet mit ab-initio Methoden) lassen sich Abstände von Protonen relativ zu pi-Elektronensystemen bestimmen und so Strukturvorschläge ableiten. Mit Hilfe von homo- und heteronuklearen dipolaren Rotationsseitenbandenmustern könnenaußerdem Ordnungs- parameter für verschiedene Molekülsegmente bestimmt werden. Die auf diese Weise gewonnenen Informationen über die strukturellen und dynamischen Eigenschaften supramolekularer Systeme tragen dazu bei, strukturbestimmende Molekül- einheiten und Hauptordnungsphänomene zu identifizieren sowie lokale Wechselwirkungen zu quantifizieren, um so den Vorgang der Selbstorganisation besser zu verstehen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, three different types of quantum rings arestudied. These are quantum rings with diamagnetic,paramagnetic or spontaneous persistent currents. It turns out that the main observable to characterizequantum rings is the Drude weight. Playing a key role inthis thesis, it will be used to distinguish betweendiamagnetic (positive Drude weight) and paramagnetic(negative Drude weight) ring currents. In most models, theDrude weight is positive. Especially in the thermodynamiclimit, it is positive semi-definite. In certain modelshowever, intuitivelysurprising, a negative Drude weight is found. This rareeffect occurs, e.g., in one-dimensional models with adegenerate ground state in conjunction with the possibilityof Umklapp scattering. One aim of this thesis is to examineone-dimensional quantum rings for the occurrence of anegative Drude weight. It is found, that the sign of theDrude weight can also be negative, if the band structurelacks particle-hole symmetry. The second aim of this thesis is the modeling of quantumrings intrinsically showing a spontaneous persistentcurrent. The construction of the model starts from theextended Hubbard model on a ring threaded by anAharonov-Bohm flux. A feedback term through which thecurrent in the ring can generate magnetic flux is added.Another extension of the Hamiltonian describes the energystored in the internally generated field. This model isevaluated using exact diagonalization and an iterativescheme to find the minima of the free energy. The quantumrings must satisfy two conditions to exhibit a spontaneousorbital magnetic moment: a negative Drude weight and aninductivity above the critical level. The magneticproperties of cyclic conjugated hydrocarbons likebenzene due to electron delocalization [magnetic anisotropy,magnetic susceptibility exaltation, nucleus-independent chemical shift (NICS)]---that have become important criteriafor aromaticity---can be examined using this model. Corrections to the presented calculations are discussed. Themost substantial simplification made in this thesis is theneglect of the Zeeman interaction of the electron spins withthe magnetic field. If a single flux tube threads a quantumring, the Zeeman interaction is zero, but in mostexperiments, this situation is difficult to realize. In themore realistic situation of a homogeneous field, the Zeemaninteraction has to be included, if the electrons have atotal spin component in the direction of the magnetic field,or if the magnetic field is strong.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dieser Arbeit werden drei wasserstoffverbrückte Systeme in der kondensierten Phase mit Hilfe von first-principles-Elektronenstruktur-Rechnungen untersucht, die auf der Dichtefunktionaltheorie (DFT) unter periodischen Randbedingungen basieren. Ihre lokalen Konformationen und Wasserstoffbrückenbindungen werden mittels ab-initio Molekulardynamiksimulationen berechnet und weiterhin durch die Bestimmung ihrer spektroskopischen Parameter charakterisiert. Der Schwerpunkt liegt dabei auf lokalen Strukturen und auf schnellen Fluktuationen der Wasserstoffbrückenbindungen, welche von zentraler Bedeutung für die physikalischen und chemischen Eigenschaften der betrachteten Systeme sind. Die für die lokalen, instantanen Konformationen berechneten Spektren werden verwendet, um die physikalischen Prozesse, die hinter den untersuchten Phänomenen stehen, zu erklären: die Wasseradsorption auf metallischen Oberflächen, die Ionensolvatisierung in wässrigen Lösungen und der Protonentransport in protonleitenden Polymeren, welche Prototypen von Membranen für Brennstoffzellen sind. Die Möglichkeit der Vorhersage spektroskopischer Parameter eröffnet vielfältige Möglichkeiten des Dialogs zwischen Experimenten und numerischen Simulationen. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, dass die Zuverlässigkeit dieser theoretischen Berechnungen inzwischen für viele experimentell relevante Systeme ein quantitatives Niveau erreicht hat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A broad variety of solid state NMR techniques were used to investigate the chain dynamics in several polyethylene (PE) samples, including ultrahigh molecular weight PEs (UHMW-PEs) and low molecular weight PEs (LMW-PEs). Via changing the processing history, i.e. melt/solution crystallization and drawing processes, these samples gain different morphologies, leading to different molecular dynamics. Due to the long chain nature, the molecular dynamics of polyethylene can be distinguished in local fluctuation and long range motion. With the help of NMR these different kinds of molecular dynamics can be monitored separately. In this work the local chain dynamics in non-crystalline regions of polyethylene samples was investigated via measuring 1H-13C heteronuclear dipolar coupling and 13C chemical shift anisotropy (CSA). By analyzing the motionally averaged 1H-13C heteronuclear dipolar coupling and 13C CSA, the information about the local anisotropy and geometry of motion was obtained. Taking advantage of the big difference of the 13C T1 relaxation time in crystalline and non-crystalline regions of PEs, the 1D 13C MAS exchange experiment was used to investigate the cooperative chain motion between these regions. The different chain organizations in non-crystalline regions were used to explain the relationship between the local fluctuation and the long range motion of the samples. In a simple manner the cooperative chain motion between crystalline and non-crystalline regions of PE results in the experimentally observed diffusive behavior of PE chain. The morphological influences on the diffusion motion have been discussed. The morphological factors include lamellar thickness, chain organization in non-crystalline regions and chain entanglements. Thermodynamics of the diffusion motion in melt and solution crystallized UHMW-PEs is discussed, revealing entropy-controlled features of the chain diffusion in PE. This thermodynamic consideration explains the counterintuitive relationship between the local fluctuation and the long range motion of the samples. Using the chain diffusion coefficient, the rates of jump motion in crystals of the melt crystallized PE have been calculated. A concept of "effective" jump motion has been proposed to explain the difference between the values derived from the chain diffusion coefficients and those in literatures. The observations of this thesis give a clear demonstration of the strong relationship between the sample morphology and chain dynamics. The sample morphologies governed by the processing history lead to different spatial constraints for the molecular chains, leading to different features of the local and long range chain dynamics. The knowledge of the morphological influence on the microscopic chain motion has many implications in our understanding of the alpha-relaxation process in PE and the related phenomena such as crystal thickening, drawability of PE, the easy creep of PE fiber, etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work deals with the characterisation of three columnar self-assembled systems, that is, benzene-1,3,5-tricarboxamides, a peripherally thioalkyl-substituted phthalocyanine, and several oligo-(p-phenylenevinylene)s. In order to probe the supramolecular organisation solid-state NMR has been used as the main technique, supported by X-ray measurements, theoretical methods, and thermal analysis. rnrnBenzene-1,3,5-tricarboxamides (BTAs) turned out to be well suited model compounds to study various fundamental supramolecular interactions, such as π-π-interactions, hydrogen bonding, as well as dynamic and steric effects of attached side chains. Six BTAs have been investigated in total, five with a CO-centred amide group bearing different side chains and one with an inverted N-centred amide group. The physical properties of these BTAs have been investigated as a function of temperature. The results indicated that in case of the CO-centred BTAs the stability of the columnar mesophase depends strongly on the nature of the side chains. Further experiments revealed a coplanar orientation of adjacent BTA molecules in the columnar assembly of CO-centred BTAs, whereas the N-centred BTA, showed a deviating not fully coplanar arrangement. These differences were ascribed to distinct hydrogen bonding schemes, involving a parallel alignment of hydrogen bonds in case of CO-centred BTAs and an antiparallel alignment in case of the N-centred counterpart.rnrn The fundamental insights of the supramolecular organisation of BTAs could be partially adapted to an octa-substituted phthalocyanine with thiododecyl moieties. Solid-state NMR in combination with chemical shift calculations determined a tilted herringbone arrangement of phthalocyanine rings in the crystalline phase as well as in the mesophase. Moreover, 1H NMR measurements in the mesophase of this compound suggested an axial rotation of molecules, which is inhibited in the crystalline phase.rnrnAs a third task, the supramolecular assembly of oligo-(p-phenylenevinylene)s of varying length and with different polar head groups have been investigated by a combined X-ray and solid-state NMR study. The results revealed a columnar structure formation of these compounds, being promoted by phase separation of alkyl side chains and aromatic rigid rods. In this system solid-state NMR yielded meaningful insight into the isotropisation process of butoxy and 2-S-methylbutoxy substituted oligo-(p-phenylenevinylene) rods.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work polymer brushes on both flat and curved substrates were prepared by grafting from and grafting to techniques. The brushes on flat substrates were patterned on the µm-scale with the use of an inkjet printer. Thus it was demonstrated that chemistry with an inkjet printer is feasible. The inkjet printer was used to deposit microdroplets of acid. The saponification of surface-immobilized ATRP initiators containing an ester bond occurred in these microdroplets. The changes in the monolayer of ester molecules due to saponification were amplified by SI-ATRP. It was possible to correlate the polymer brush thickness to effectiveness of saponification. The use of an inkjet printer allowed for simultaneously screening of parameters such as type of acid, concentration of acid, and contact time between acid and surface. A dip-coater was utilized in order to test the saponification independent of droplet evaporation. The advantage of this developed process is its versatility. It can be applied to all surface-immobilized initiators containing ester bonds. The technique has additionally been used to selectively defunctionalize the initiator molecules covering a microcantilever on one side of a cantilever. An asymmetric coating of the cantilever with polymer brushes was thus generated. An asymmetric coating allows the use of a microcantilever for sensing applications. The preparation of nanocomposites comprised of polyorganosiloxane microgel particles functionalized with poly(ethyl methacrylate) (PEMA) brushes and linear, but entangled, PEMA chains is described in the second major part of this thesis. Measurement of the interparticle distance was performed using scanning probe microscopy and grazing incidence small angle X-ray scattering. The matrix molecular weight at which the nanocomposite showed microphase separation was related to abrupt changes in inter-particle distance. Microphase separation occurred once the matrix molecular exceeded the molecular weight of the brushes. The trigger for the microphase separation was a contraction of the polymer brushes, as the measurements of inter-particle distance have revealed. The brushes became impenetrable for the matrix chains upon contraction and thus behaved as hard spheres. The contraction led to a loss of anchoring between particles and matrix, as shown by nanowear tests using an atomic force microscope. Polyorganosiloxane microgel particles were functionalized with 13C enriched poly(ethyl methacrylate) brushes. New synthetic pathways were developed in order to enrich not the entire brush with 13C, but only exclusively selected regions. 13C chemical shift anisotropy, an advanced NMR technique, can thus be used in order to gather information about the extended conformations in the 13C enriched regions of the PEMA chains immobilized on the µ-gel-g-PEMA particles. The third part of this thesis deals with the grafting to of polymeric fullerene materials on silicon substrates. Active ester chemistry was employed in order to prepare the polymeric fullerene materials and graft these materials covalently on amino-functionalized silicon substrates.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study more than 450 natural sapphire samples (most of basaltic type) collected from 19 different areas were examined. They are from Dak Nong, Dak Lak, Quy Chau, two unknown sources from the north (Vietnam); Bo Ploi, Khao Ploi Waen (Thailand); Ban Huay Sai (Laos); Australia; Shandong (China); Andapa, Antsirabe, Nosibe (Madagascar); Ballapana (Sri Lanka); Brazil; Russia; Colombia; Tansania and Malawi. rnThe samples were studied on internal characteristics, chemical compositions, Raman-, luminescence-, Fourier transform infrared (FTIR)-, and ultraviolet-visible-near infrared (UV-Vis-NIR)- spectroscopy. The internal features of these sapphire samples were observed and identified by gemological microscope, con focal micro Raman and FTIR spectroscopy. The major and minor elements of the samples were determined by electron probe microanalysis (EPMA) and the trace elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). rnThe structural spectra of sapphire were investigated by con focal Raman spectroscopy. The FTIR spectroscopy was used to study the vibration modes of OH-groups and also to determine hydrous mineral inclusions in sapphire. The UV-Vis-NIR absorption spectroscopy was used to analyze the cause of sapphire color. rnNatural sapphires contain many types of mineral inclusions. Typically, they are iron-containing inclusions like goethite, ilmenite, hematite, magnetite or silicate minerals commonly feldspar, and often observed in sapphires from Asia countries, like Dak Nong, Dak Lak in the south of Vietnam, Ban Huay Sai (Laos), Khao Ploi Waen and Bo Ploi (Thailand) or Shandong (China). Meanwhile, CO2-diaspore inclusions are normally found in sapphires from Tansania, Colombia, or the north of Vietnam like Quy Chau. rnIron is the most dominant element in sapphire, up to 1.95 wt.% Fe2O3 measured by EPMA and it affects spectral characteristics of sapphire.rnThe Raman spectra of sapphire contain seven peaks (2A1g + 5Eg). Two peaks at about 418.3 cm-1 and 577.7 cm-1 are influenced by high iron content. These two peaks shift towards smaller wavenumbers corresponding to increasing iron content. This shift is showed by two equations y(418.3)=418.29-0.53x andy(577.7)=577.96-0.75x, in which y is peak position (cm-1) and x is Fe2O3 content (wt.%). By exploiting two these equations one can estimate the Fe2O3 contents of sapphire or corundum by identifying the respective Raman peak positions. Determining the Fe2O3 content in sapphire can help to distinguish sapphires from different origins, e.g. magmatic and metamorphic sapphire. rnThe luminescence of sapphire is characterized by two R-lines: R1 at about 694 nm and R2 at about 692 nm. This characteristic is also influenced by high iron content. The peak positions of two R-lines shift towards to smaller wavelengths corresponding to increasing of iron content. This correlation is showed by two equations y(R_2 )=692.86-0.049x and y(R_1 )=694.29-0.047x, in which y is peak position (nm) of respective R-lines and x is Fe2O3 content (wt.%). Two these equations can be applied to estimate the Fe2O3 content of sapphire and help to separate sapphires from different origins. The luminescence is also applied for determination of the remnant pressure or stress around inclusions in Cr3+-containing corundum by calibrating a 0-pressure position in experimental techniques.rnThe infrared spectra show the presence of vibrations originating from OH-groups and hydrous mineral inclusions in the range of 2500-4000 cm-1. Iron has also an effect upon the main and strongest peak at about 3310 cm-1. The 3310 cm-1 peak is shifted to higher wavenumber when iron content increases. This relationship is expressed by the equation y(3310)=0.92x+3309.17, in which y is peak position of the 3310 cm-1 and x is Fe2O3 content (wt.%). Similar to the obtained results in Raman and luminescence spectra, this expression can be used to estimate the Fe2O3 content and separate sapphires from different origins. rnThe UV-Vis-NIR absorption spectra point out the strong and sharp peaks at about 377, 387, and 450 nm related to dispersed Fe3+, a broad band around 557 and 600 nm related to intervalence charge transfer (IVCT) Fe2+/Ti4+, and a broader band around 863 nm related to IVCT of Fe2+/Fe3+. rnGenerally, sapphires from different localities were completely investigated on internal features, chemical compounds, and solid spectral characteristics. The results in each part contribute for identifying the iron content and separate sapphires from different localities order origins. rn