15 resultados para Blue Emission in Polyaniline Thin Films
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Gegenstand dieser Arbeit war die Untersuchung von metallischen gemischtvalenten Manganaten und magnetischen Doppelperowskiten. Aufgrund ihres großen negativen Magnetowiderstandes (MW) sind diese halbmetallischen Oxide interessant für mögliche technische Anwendungen, z.B. als Leseköpfe in Festplatten. Es wurden die kristallographischen, elektronischen und magnetischen Eigenschaften von epitaktischen Dünnschichten und polykristallinen Pulverproben bestimmt.Epitaktische Dünnschichten der Verbindungen La0.67Ca0.33MnO3 und La0.67Sr0.33MnO3 wurdenmit Kaltkathodenzerstäubung und Laserablation auf einkristallinen Substraten wie SrTiO3abgeschieden. Mit Hall-Effekt Messungen wurde ein Zusammenbruch der Ladungsträgerdichte bei der Curie-Temperatur TC beobachtet.Mit dem Wechsel des Dotierungsatoms A von Ca (TC=232 K) zu Sr (TC=345 K)in La0.67A0.33MnO3 konnte die Feldsensitivität des Widerstandes bei Raumtemperatur gesteigert werden. Um die Sensitivität weiter zu erhöhen wurde die hohe Spinpolarisation von nahezu 100% in Tunnelexperimenten ausgenutzt. Dazu wurden biepitaktische La0.67Ca0.33MnO3 Schichten auf SrTiO3 Bikristallsubstraten hergestellt. Die Abhängigkeit des Tunnelmagnetowiderstandes (TMW) vom magnetischen Feld, Temperatur und Strum war ein Schwerpunkt der Untersuchung. Mittels spinpolarisierten Tunnelns durch die künstliche Korngrenze konnte ein hysteretischer TMW von 70% bei 4 K in kleinen Magnetfeldern von 120 Oe gemessen werden. Eine weitere magnetische Oxidverbindung, der Doppelperowskit Sr2FeMoO6 miteine Curie-Temperatur oberhalb 400 K und einem großen MW wurde mittels Laserablation hergestellt. Die Proben zeigten erstmals das Sättigunsmoment, welches von einer idealen ferrimagnetischen Anordnung der Fe und Mo Ionen erwartet wird. Mit Hilfe von Magnetotransportmessungen und Röntgendiffraktometrie konnte eine Abhängigkeit zwischen Kristallstruktur (Ordnung oder Unordnung im Fe, Mo Untergitter) und elektronischem Transport (metallisch oder halbleitend) aufgedeckt werden.Eine zweiter Doppelperowskit Ca2FeReO6 wurde im Detail als Pulverprobe untersucht. Diese Verbindung besitzt die höchste Curie-Temperatur von 540 K, die bis jetzt in magnetischen Perowskiten gefunden wurde. Mit Neutronenstreuung wurde eine verzerrte monoklinische Struktur und eine Phasenseparation aufgedeckt.
Resumo:
Durch steigende Energiekosten und erhöhte CO2 Emission ist die Forschung an thermoelektrischen (TE) Materialien in den Fokus gerückt. Die Eignung eines Materials für die Verwendung in einem TE Modul ist verknüpft mit der Gütezahl ZT und entspricht α2σTκ-1 (Seebeck Koeffizient α, Leitfähigkeit σ, Temperatur T und thermische Leitfähigkeit κ). Ohne den Leistungsfaktor α2σ zu verändern, soll ZT durch Senkung der thermischen Leitfähigkeit mittels Nanostrukturierung angehoben werden.rnBis heute sind die TE Eigenschaften von den makroskopischen halb-Heusler Materialen TiNiSn und Zr0.5Hf0.5NiSn ausgiebig erforscht worden. Mit Hilfe von dc Magnetron-Sputterdeposition wurden nun erstmals halbleitende TiNiSn und Zr0.5Hf0.5NiSn Schichten hergestellt. Auf MgO (100) Substraten sind stark texturierte polykristalline Schichten bei Substrattemperaturen von 450°C abgeschieden worden. Senkrecht zur Oberfläche haben sich Korngrößen von 55 nm feststellen lassen. Diese haben Halbwertsbreiten bei Rockingkurven von unter 1° aufgewiesen. Strukturanalysen sind mit Hilfe von Röntgenbeugungsexperimenten (XRD) durchgeführt worden. Durch Wachstumsraten von 1 nms 1 konnten in kürzester Zeit Filmdicken von mehr als einem µm hergestellt werden. TiNiSn zeigte den höchsten Leistungsfaktor von 0.4 mWK 2m 1 (550 K). Zusätzlich wurde bei Raumtemperatur mit Hilfe der differentiellen 3ω Methode eine thermische Leitfähigkeit von 2.8 Wm 1K 1 bestimmt. Es ist bekannt, dass die thermische Leitfähigkeit mit der Variation von Massen abnimmt. Weil zudem angenommen wird, dass sie durch Grenzflächenstreuung von Phononen ebenfalls reduziert wird, wurden Übergitter hergestellt. Dabei wurden TiNiSn und Zr0.5Hf0.5NiSn nacheinander abgeschieden. Die sehr hohe Kristallqualität der Übergitter mit ihren scharfen Grenzflächen konnte durch Satellitenpeaks und Transmissionsmikroskopie (STEM) nachgewiesen werden. Für ein Übergitter mit einer Periodizität von 21 nm (TiNiSn und Zr0.5Hf0.5NiSn jeweils 10.5 nm) ist bei einer Temperatur von 550 K ein Leistungsfaktor von 0.77 mWK 2m 1 nachgewiesen worden (α = 80 µVK 1; σ = 8.2 µΩm). Ein Übergitter mit der Periodizität von 8 nm hat senkrecht zu den Grenzflächen eine thermische Leitfähigkeit von 1 Wm 1K 1 aufgewiesen. Damit hat sich die Reduzierung der thermischen Leitfähigkeit durch die halb-Heusler Übergitter bestätigt. Durch die isoelektronischen Eigenschaften von Titan, Zirkonium und Hafnium wird angenommen, dass die elektrische Bandstruktur und damit der Leistungsfaktor senkrecht zu den Grenzflächen nur schwach beeinflusst wird.rn
Resumo:
Nanoscience aims at manipulating atoms, molecules and nano-size particles in a precise and controlled manner. Nano-scale control of the thin film structures of organic/polymeric materials is a prerequisite to the fabrication of sophisticated functional devices. The work presented in this thesis is a compilation of various polymer thin films with newly synthesized functional polymers. Cationic and anionic LC amphotropic polymers, p-type and n-type semiconducting polymers with triarylamine, oxadiazole, thiadiazole and triazine moieties are suitable materials to fabricate multilayers by layer-by-layer (LBL) self-assembly with a well defined internal structure. The LBL assembly is the ideal processing technique to prepare thin polymer film composites with fine control over morphology and composition at nano-scale thickness, which may have applications in photo-detectors, light-emitting diodes (LEDs), displays and sensors, as well as in solar cells. The multilayer build-up was investigated with amphotropic LC polymers individually by solution-dipping and spin-coating methods; they showed different internal orders with respect to layering and orientation of the mesogens, as a result of the liquid crystalline phase. The synthesized p-type and n-type semiconducting polymers were examined optically and electrochemically, suggesting that they are favorably promising as hole-(p-type) or electron-(n-type) transport materials in electronic and optoelectronic devices. In addition, we report a successful film deposition of polymers by the vacuum deposition method. The vapor deposition method provides a clean environment; it is solvent free and well suited to sequential depositions in hetero-structured multilayer system. As the potential applications, the fabricated polymer thin films were used as simple electrochromic films and also used as hole transporting layers in LEDs. Electrochemical and electrochromic characterizations of assembled films reveal that the newly synthesized polymers give rise to high contrast ratio and fast switching electrochromic films. The LEDs with vacuum deposited films show dramatic improvements in device characteristics, indicating that the films are promising as hole transporting layers. These are the result of not only the thin nano-scale film structures but also the combination with the high charge carrier mobility of synthesized semiconducting polymers.
Resumo:
Plasma polymerization technique is widely accepted as an effective and simple method for the preparation of functional thin films. By careful choice of precursors and deposition parameters, plasma polymers bearing various functional groups could be easily obtained. In this work, I explored the deposition of four kinds of plasma polymerised functional thin films, including the protein-resistant coatings, the thermosensitive coatings, as well as, the coatings bearing amine or epoxide groups. The deposited plasma polymers were characterized by various techniques, such as X-ray photoelectron spectroscopy, atom force microscopy, Fourier transform infrared spectroscopy, surface plasmon resonance spectroscopy, optical waveguide spectroscopy, and so on. As expected, high retention of various functional groups could be achieved either at low plasma input power or at low duty cycle (duty cycle = Ton/(Ton+Toff)). The deposited functional thin films were found to contain some soluble materials, which could be removed simply by extraction treatment. Besides the thermosentive plasma polymer (see Chapter 9), other plasma polymers were used for developing DNA sensors. DNA sensing in this study was achieved using surface plasmon enhanced fluorescence spectroscopy. The nonfouling thin films (i.e., ppEO2, plasma polymerization of di(ethylene glycol) monovinyl ether) were used to make a multilayer protein-resistant DNA sensor (see Chapter 5). The resulted DNA sensors show good anti-fouling properties towards either BSA or fibrinogen. This sensor was successfully employed to discriminate different DNA sequences from protein-containing sample solutions. In Chapter 6, I investigated the immobilization of DNA probes onto the plasma polymerized epoxide surfaces (i.e., ppGMA, plasma polymerization of glycidyl methacrylate). The ppGMA prepared at a low duty cycle showed good reactivity with amine-modified DNA probes in a mild basic environment. A DNA sensor based on the ppGMA was successfully used to distinguish different DNA sequences. While most DNA detection systems rely on the immobilization of DNA probes onto sensor surfaces, a new homogeneous DNA detection method was demonstrated in Chapter 8. The labeled PNA serves not only as the DNA catcher recognizing a particular target DNA, but also as a fluorescent indicator. Plasma polymerized allylamine (ppAA) films were used here to provide a positively charged surface.
Resumo:
A nanostructured thin film is a thin material layer, usually supported by a (solid) substrate, which possesses subdomains with characteristic nanoscale dimensions (10 ~ 100 nm) that are differentiated by their material properties. Such films have captured vast research interest because the dimensions and the morphology of the nanostructure introduce new possibilities to manipulating chemical and physical properties not found in bulk materials. Block copolymer (BCP) self-assembly, and anodization to form nanoporous anodic aluminium oxide (AAO), are two different methods for generating nanostructures by self-organization. Using poly(styrene-block-methyl methacrylate) (PS-b-PMMA) nanopatterned thin films, it is demonstrated that these polymer nanopatterns can be used to study the influence of nanoscale features on protein-surface interactions. Moreover, a method for the directed assembly of adsorbed protein nanoarrays, based on the nanoscale juxtaposition of the BCP surface domains, is also demonstrated. Studies on protein-nanopattern interactions may inform the design of biomaterials, biosensors, and relevant cell-surface experiments that make use of nanoscale structures. In addition, PS-b-PMMA and AAO thin films are also demonstrated for use as optical waveguides at visible wavelengths. Due to the sub-wavelength nature of the nanostructures, scattering losses are minimized, and the optical response is amenable to analysis with effective medium theory (EMT). Optical waveguide measurements and EMT analysis of the films’ optical anisotropy enabled the in situ characterization of the PS-b-PMMA nanostructure, and a variety of surface processes within the nanoporous AAO involving (bio)macromolecules at high sensitivity.
Resumo:
Die Kombination magnetischer Nanopartikel (NP) mit temperatursensitiven Polymeren führt zur Bildung neuer Komposit-Materialien mit interessanten Eigenschaften, die auf vielfältige Weise genutzt werden können. Mögliche Anwendungsgebiete liegen in der magnetischen Trennung, der selektiven Freisetzung von Medikamenten, dem Aufbau von Sensoren und Aktuatoren. Als Polymerkomponente können z.B. Hydrogele dienen. Die Geschwindigkeit der Quellgradänderung mittels externer Stimuli kann durch eine Reduzierung des Hydrogelvolumens erhöht werden, da das Quellen ein diffusionskontrollierter Prozess ist. rnIm Rahmen dieser Arbeit wurde ein durch ultraviolettes Licht vernetzbares Hydrogel aus N-isopropylacrylamid, Methacrylsäure und dem Vernetzer 4-Benzoylphenylmethacrylat hergestellt (PNIPAAm-Hydrogel) und mit magnetischen Nanopartikeln aus Magnetit (Fe3O4) kombiniert. Dabei wurde die Temperatur- und die pH-Abhängigkeit des Quellgrades im Hinblick auf die Verwendung als nanomechanische Cantilever Sensoren (NCS) untersucht. Desweiteren erfolgte eine Charakterisierung durch Oberflächenplasmonen- und optischer Wellenleitermoden-Resonanz Spektroskopie (SPR/OWS). Die daraus erhaltenen Werte für den pKa-Wert und die lower critical solution Temperatur (LCST) stimmten mit den bekannten Literaturwerten überein. Es konnte gezeigt werden, dass eine stärkere Vernetzung zu einer geringeren LCST führt. Die Ergebnisse mittels NCS wiesen zudem auf einen skin-effect während des Heizens von höher vernetzten Polymeren hin.rnDie Magnetit Nanopartikel wurden ausgehend von Eisen(II)acetylacetonat über eine Hochtemperaturreaktion synthetisiert. Durch Variation der Reaktionstemperatur konnte die Größe der hergestellten Nanopartikel zwischen 3.5 und 20 nm mit einer Größenverteilung von 0.5-2.5 nm eingestellt werden. Durch geeignete Oberflächenfunktionalisierung konnten diese in Wasser stabilisiert werden. Dazu wurde nach zwei Strategien verfahren: Zum einen wurden die Nanopartikel mittels einer Silika-Schale funktionalisiert und zum anderen Zitronensäure als Tensid eingesetzt. Wasserstabilität ist vor allem für biologische Anwendungen wünschenswert. Die magnetischen Partikel wurden mit Hilfe von Transmissionselektronenmikroskopie (TEM), und superconductive quantum interference device (SQUID) charakterisiert. Dabei wurde eine Größenabhängigkeit der magnetischen Eigenschaften sowie superparamagnetisches Verhalten beobachtet. Außerdem wurde die Wärmeerzeugung der magnetischen Nanopartikel in einem AC Magnetfeld untersucht. rnDie Kombination beider Komponenten in Form eines Ferrogels wurde durch Mischen Benzophenon funktionalisierter magnetischer Nanopartikel mit Polymer erreicht. Durch Aufschleudern (Spin-Coaten) wurden dünne Filme erzeugt und diese im Hinblick auf ihr Verhalten in einem Magnetfeld untersucht. Dabei wurde eine geringes Plastikverhalten beobachtet. Die experimentellen Ergebnisse wurden anschließend mit theoretisch berechneten Erwartungswerten verglichen und mit den unterschiedlichen Werten für dreidimensionale Ferrogele in Zusammenhang gestellt. rn
Resumo:
Wir haben die linearen und nichtlinearen optischen Eigenschaften von dünnen Schichten und planaren Wellenleitern aus mehreren konjugierten Polymeren (MEH-PPV und P3AT) und Polymeren mit -Elektronen Systemen in der Seitenkette (PVK und PS) untersucht und verglichen. PVK und PS haben relativ kleine Werte des nichtlinearen Brechungsindex n2 bei 532 nm, nämlich (1,2 ± 0,5)10-14 cm2/W und (2,6 ± 0,5) 10-14 cm2/W.rnWir haben die linearen optischen Konstanten von mehreren P3ATs untersucht, insbesondere den Einfluss der Regioregularität und Kettenlänge der Alkylsubstituenten. Wir haben das am besten geeignete Polymere für Wellenleiter Anwendungen identifiziert, welches P3BT-ra genannt ist. Wir haben die linearen optischen Eigenschaften dünner Schichten des P3BT-ra untersucht, die mit Spincoating aus verschiedenen Lösungsmitteln mit unterschiedlichen Siedetemperaturen präparieret wurden. Wir haben festgestellt, dass P3BT-ra Filme aus Toluol-Lösungen die am besten geeigneten Wellenleiter für die intensitätsabhängigen Prismen-Kopplungs Experimente sind, weil diese geringe Wellenleiterdämpfungsverluste bei = 1064 nm haben. rnWir haben die Dispersionen des Wellenleiterdämfungsverlustes gw, des nichtlinearen Brechungsindex n2 und des nichtlinearen Absorptionskoeffizienten 2 von Wellenleitern aus P3BT-ra im Bereich von 700 - 1500 nm gemessen. Wir haben große Werte des nichtlinearen Brechungsindex bis 1,5x10-13 cm2/W bei 1150 nm beobachtet. Wir haben gefunden, dass die Gütenkriterien (“figures of merit“) für rein optische Schalter im Wellenlängebereich 1050 - 1200 nm erfüllt sind. Dieser Bereich entspricht dem niederenergetischen Ausläufer der Zwei-Photonen-Absorption. Die Gütekriterien von P3BT-ra gehören zu den besten der bisher bekannten Werte von konjugierten Polymeren.rnWir haben gefunden, dass P3BT-ra ein vielversprechender Kandidat für integriert-optische Schalter ist, weil es eine gute Kombination aus großer Nichtlinearität dritter Ordnung, geringen Wellenleiterdämpfungverlusten und ausreichender Photostabilität zeigt. rnWir haben einen Vergleich der gemessenen Dispersion von gw, n2 und 2 mit der Theorie durchgeführt. Durch Kurvenanpassung der Dispersion von gw haben wir gefunden, dass Rayleigh-Streuung der dominierende Dämpfungsmechanismus in MEH-PPV und P3BT-ra Wellenleitern ist. Ein quantenmechanischer Ansatz wurde zur Berechnung der nichtlinearen Suszeptibilität dritter Ordnung (3) verwendet, um die gemessenen Spektren von n2 und 2 von P3BT-ra und MEH-PPV zu simulieren. Dies kann erklären, dass sättigbare Absorption und Zwei-Photonen Absorption die hauptsächlichen Effekte sind, welche die Dispersion von n2 und 2 verursachen. rn
Resumo:
Gegenstand dieser Arbeit ist die Präparation und die ausführliche Charakterisierung epitaktischer Dünnschicht-Proben der Heusler Verbindung Ni2MnGa. Diese intermetallische Verbindung zeigt einen magnetischen Formgedächtnis-Effekt (MFG), der sowohl im Bezug auf mögliche Anwendungen, als auch im Kontext der Grundlagenforschung äußerst interessant ist. In Einkristallen nahe der Stöchiometrie Ni2MnGa wurden riesige magnetfeldinduzierte Dehnungen von bis zu 10 % nachgewiesen. Der zugrundeliegende Mechanismus basiert auf einer Umverteilung von kristallographischen Zwillings-Varianten, die eine tetragonale oder orthorhombische Symmetrie besitzen. Unter dem Einfluss des Magnetfeldes bewegen sich die Zwillingsgrenzen durch den Kristall, was eine makroskopische Formänderung mit sich bringt. Die somit erzeugten reversiblen Längenänderungen können mit hoher Frequenz geschaltet werden, was Ni2MnGa zu einem vielversprechenden Aktuatorwerkstoff macht. rnDa der Effekt auf einem intrinsischen Prozess beruht, eignen sich Bauteile aus MFG Legierungen zur Integration in Mikrosystemen (z.B. im Bereich der Mikrofluidik). rnrnBislang konnten große magnetfeldinduzierte Dehnungen nur für Einkristalle und Polykristalle mit hoher Porosität („foams") nachgewiesen werden. Um den Effekt für Anwendungen nutzbar zu machen, werden allerdings Konzepte zur Miniaturisierung benötigt. Eine Möglichkeit bieten epitaktische dünne Filme, die im Rahmen dieser Arbeit hergestellt und untersucht werden sollen. Im Fokus stehen dabei die Optimierung der Herstellungsparameter, sowie die Präparation von freitragenden Schichten. Zudem werden verschiedene Konzepte zur Herstellung freistehender Mikrostrukturen erprobt. Mittels Röntgendiffraktometrie konnte die komplizierte Kristallstruktur für verschiedene Wachstumsrichtungen verstanden und die genaue Verteilung der Zwillingsvarianten aufgedeckt werden. In Verbindung mit Mikroskopie-Methoden konnte so die Zwillingsstruktur auf verschiedenen Längenskalen geklärt werden. Die Ergebnisse erklären das Ausbleiben des MFG Effekts in den Proben mit (100) Orientierung. Andererseits wurde für Schichten mit (110) Wachstum eine vielversprechende Mikrostruktur entdeckt, die einen guten Ausgangspunkt für weitere Untersuchungen bietet.rnDurch die spezielle Geometrie der Proben war es möglich, Spektroskopie-Experimente in Transmission durchzuführen. Die Ergebnisse stellen den ersten experimentellen Nachweis der Änderungen in der elektronischen Struktur einer metallischen Verbindung während des martensitischen Phasenübergangs dar. Durch Messen des magnetischen Zirkulardichroismus in der Röntgenabsorption konnten quantitative Aussagen über die magnetischen Momente von Ni und Mn getroffen werden. Die Methode erlaubt überdies die Beiträge von Spin- und Bahn-Moment separat zu bestimmen. Durch winkelabhängige Messungen gelang es, die mikroskopische Ursache der magnetischen Anisotropie aufzuklären. Diese Ergebnisse tragen wesentlich zum Verständnis der komplexen magnetischen und strukturellen Eigenschaften von Ni2MnGa bei.rn
Resumo:
X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn
Resumo:
In this work the flux line dynamics in High-Temperature Superconductor (HTSC) thin films in the presence of columnar defects was studied using electronic transport measurements. The columnar defects which are correlated pinning centers for vortices were generated by irradiation with swift heavy ions at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt. In the first part, the vortex dynamics is discussed within the framework of the Bose-glass model. This approach describes the continuous transition from a vortex liquid to a Bose-glass phase which is characterized by the localization of the flux lines at the columnar defects. The critical behavior of the characteristic length and time scales for temperatures in the vicinity of this phase transition were probed by scaling properties of experimentally obtained current-voltage characteristics. In contrast to the predicted universal properties of the critical behavior the scaling analysis shows a strong dependence of the dynamic critical exponent on the experimentally accessible electric field range. In addition, the predicted divergence of the activation energy in the limit of low current densities was experimentally not confirmed.The dynamic behavior of flux lines in spatially resolved irradiation geometries is reported in the second part. Weak pinning channels with widths between 10 µm and 100 µm were generated in a strong pinning environment with the use of metal masks and the GSI microprobe, respectively. Measurements of the anisotropic transport properties of these structures show a striking resemblance to the results in YBCO single crystals with unidirected twin boundaries which were interpreted as a guided vortex motion effect. The use of two additional test bridges allowed to determine in parallel the resistivities of the irradiated and unirradiated parts as well as the respective current-voltage characteristics. These measurements provided the input parameters for a numerical simulation of the potential distribution in the spatially resolved irradiation geometry. The results are interpreted within a model that describes the hydrodynamic interaction between a Bose-glass phase and a vortex liquid. The interface between weakly pinned flux lines in the unirradiated channels and strongly pinned vortices leads to a nonuniform vortex velocity profile and therefore a variation of the local electric field. The length scale of these interactions was estimated for the first time in measuring the local variation of the electric field profile in a Bose-glass contact.Finally, a method for the determination of the true temperature in HTSC thin films at high dissipation levels is described. In this regime of electronic transport the occurrence of a flux flow instability is accompanied by heating effects in the vortex system. The heat propagation properties of the film/substrate system are deduced from the time dependent voltage response to a short high current density pulse of rectangular shape. The influence of heavy ion irradiation on the heat resistance at the film/substrate interface is studied.
Resumo:
We report on a strategy to prepare metal oxides including binary oxide and mixed metal oxide (MMO) in form of nanometer-sized particles using polymer as precursor. Zinc oxide nanoparticles are prepared as an example. The obtained zinc polyacrylate precursor is amorphous as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The conversion from polymer precursor to ZnO nanocrystals by thermal pyrolysis was investigated by means of XRD, thermogravimetric analysis (TGA) and electron microscopy. The as-synthesized ZnO consists of many individual particles with a diameter around 40 nm as shown by scanning electron microscopy (SEM). The photoluminescence (PL) and electron paramagnetic (EPR) properties of the material are investigated, too. Employing this method, ZnO nanocrystalline films are fabricated via pyrolysis of a zinc polyacrylate precursor film on solid substrate like silicon and quartz glass. The results of XRD, absorption spectra as well as TEM prove that both the ZnO nanopowder and film undergo same evolution process. Comparing the PL properties of films fabricated in different gas atmosphere, it is assigned that the blue emission of the ZnO films is due to crystal defect of zinc vacancy and green emission from oxygen vacancy. Two kinds of ZnO-based mixed metal oxide (Zn1-xMgxO and Zn1-xCoxO) particles with very precise stoichiometry are prepared by controlled pyrolysis of the corresponding polymer precursor at 550 oC. The MMO crystal particles are typically 20-50 nm in diameter. Doping of Mg in ZnO lattice causes shrinkage of lattice parameter c, while it remains unchanged with Co incorporation. Effects of bandgap engineering are seen in the Mg:ZnO system. The photoluminescence in the visible is enhanced by incorporation of magnesium on zinc lattice sites, while the emission is suppressed in the Co:ZnO system. Magnetic property of cobalt doped-ZnO is checked too and ferromagnetic ordering was not found in our samples. An alternative way to prepare zinc oxide nanoparticles is presented upon calcination of zinc-loaded polymer precursors, which is synthesized via inverse miniemulsion polymerization of the mixture of the acrylic acid and zinc nitrate. The as-prepared ZnO product is compared with that obtained from polymer-salt complex method. The obtained ZnO nanoparticles undergo surface modification via a phosphate modifier applying ultrasonication. The morphology of the modified particles is checked by SEM. And stability of the ZnO nanoparticles in aqueous dispersion is enhanced as indicated by the zeta-potential results.
Resumo:
In der vorliegenden Arbeit wurden experimentelle Untersuchungen zu gepfropften Polymerfilmen durchgeführt. Dabei wurden endgepfropfte poly-methyl-methacrylate (PMMA) Bürsten hergestellt durch „grafting from“ Methoden und polystyrol (PS)/ poly-vinyl-methyl-ether (PVME) Polymerfilme gepfropft auf UV sensitiven Oberflächen untersucht. Zur Strukturuntersuchung wurden die hergestellten Systeme wurden mit Rasterkraftmikroskopie (engl.: Surface Probe Microscopy, SPM), Röntgen - und Neutronenreflektivitätsmessungen, sowie mit Röntgenstreuung unter streifenden Einfall (engl.: Grazing Incidence Small Angle X-Ray Scattering, GISAXS) untersucht. rnEs wurde gezeigt, dass ein aus der Transmissionsstreuung bekanntes Model auch für auch für die GISAXS Analyse polydisperser Polymerdomänen und Kolloidsysteme verwendet werden kann. Der maximale Fehler durch die gemachten Näherungen wurde auf < 20% abgeschätzt.rnErgebnisse aus der Strukturanalyse wurden mit mechanischen Filmeigenschaften verknüpft. Dazu wurden mechanische Spannungsexperimente durchgeführt. Hierzu wurden die zu untersuchenden Filme selektiv auf einzelne Mikro-Federbalken-Sensoren (engl.: Micro Cantilever Sensor, MCS) der MCS Arrays aufgebracht. Dies wurde durch Maskierungstechniken und Mikro-Kontaktdrucken bewerkstelligt. rnPhasenübergansexperimente der gepfropften PS/PVME Filme haben gezeigt, dass die Möglichkeit einer Polymer/Polymer Phasenseparation stark von Propfpunktdichte der gebundenen Polymerketten mit der Oberfläche abhängt. PS/PVME Filmsysteme mit hohen Pfropfpunktdichten zeigten keinen Phasenübergang. Bei niedrig gepfropften Filmsystemen waren hingegen Polymer/Polymer Phasenseparationen zu beobachten. Es wurde geschlussfolgert, dass die gepfropften Polymersysteme einen hinreichenden Grad an entropischen Freiheitsgraden benötigen um eine Phasenseparation zu zeigen. Mechanische Spannungsexperimente haben dabei das Verstehen der Phasenseparationsmechanismen möglich gemacht.rnAus Quellexperimenten dichtgepfropfter PMMA Bürsten, wurden Lösungsmittel-Polymer Wechselwirkungsparameter (-Parameter) bestimmt. Dabei wurde festgestellt, dass sich die erhaltenen Parameter aufgrund von Filmbenetzung und entropischen Effekten maßgeblich von den errechneten Bulkwerten unterscheiden. Weiterhin wurden nicht reversible Kettenverschlaufungseffekt beobachtet.
Resumo:
In the present study, thin functional conducting polyaniline (PANI) films, either doped or undoped, patterned or unpatterned, were prepared by different approaches. The properties of the obtained PANI films were investigated in detail by a combination of electrochemistry with several other techniques, such as SPR, QCM, SPFS, diffraction, etc. The sensing applications (especially biosensing applications) of the prepared PANI films were explored. Firstly, the pure PANI films were prepared by the electropolymerisation method and their doping/dedoping properties in acidic conditions were investigated in detail by a combination of electrochemistry with SPR and QCM. Dielectric constants of PANI at different oxidation states were obtained quantitatively. The results obtained here laid a good foundation for the following investigations of PANI films in neutral pH conditions. Next, PANI multilayer films doped by a variety of materials were prepared by the layer-by-layer method in order to explore their biosensing applications, because of the loss of redox activity of pure PANI in neutral pH conditions. The dopants used include not only the traditionally used linear polyelectrolytes, but also, for the first tim, some other novel materials, like modified gold nanoparticles or modified carbon nanotubes. Our results showed that all the used dopants could form stable multilayer films with PANI. All the obtained PANI multilayer films showed good redox activity in a neutral pH environment, which makes them feasible for bioassays. We found that all the prepared PANI multilayer films can electrocatalyze the oxidation of NADH in neutral conditions at a low potential, although their catalytic efficiencies are different. Among them, PANI/carbon nanotube system showed the highest catalytic efficiency toward the oxidation of NADH, which makes it a good candidate as a NADH sensor. Besides, because some of the prepared PANI multilayer systems were end-terminated with –COOH groups (like PANI/Au nanoparticles system), which can be utilized to easily link biomolecules for biosensing applications. Here, we demonstrated, for the first time, to use the prepared PANI multilayer films for the DNA hybridisation detection. The detection event was monitored either by direct electrochemical method, or by enzyme-amplified electrochemical method, or by surface plasmon enhanced fluorescence spectroscopic method. All the methods can effectively differentiate non-complementary DNA from the complementary ones, even at the single-base mismatch level. It should also be noted that, our success in fabricating PANI multilayer films with modified Au nanoparticles or carbon nanotubes also offered another novel method for incorporating such novel materials into (conducting) polymers. Because of the unique electrochemical and optical properties of each component of the obtained PANI multilayer films, they should also find potential applications in many other fields such as microelectronics, or for electrochromic and photovoltaic devices. Finally, patterned PANI films were fabricated by the combination of several patterning techniques, such as the combination of electrocopolymerization with micromolding in capillaries (EP-MIMIC), the combination of microcontact printing with the layer-by-layer technique (µCP-LBL), and the polystyrene (PS) template induced electropolymerisation method. Using the obtained stripe-shaped PANI/PSS film, a redox-switchable polymer grating based on the surface-plasmon-enhanced mode was constructed and its application in the field of biosensing was explored. It was found that the diffraction efficiency (DE) of the grating was very sensitive to the applied potential (i.e. redox state of the film) as well as the pH environment of the dielectric medium. Moreover, the DE could also be effectively tuned by an electrocatalytic event, such as the electrocatalytic oxidation of NADH by the grating film. By using PS colloidal crystal assemblies as templates, well-ordered 3D interconnected macroporous PANI arrays (PANI inverse opals) were fabricated via electropolymerisation method. The quality of the obtained inverse opals was much higher than those reported by chemical synthesis method. By electrochemical method, the structures of the prepared inverse opals can be easily controlled. To explore the possible biosensing applications of PANI inverse opals, efforts were also done toward the fabrication of PANI composite inverse opals. By selecting proper dopants, high quality inverse opals of PANI composites were fabricated for the first time. And the obtained opaline films remained redox-active in neutral pH conditions, pointing to their possible applications for electrobioassays.
Resumo:
In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.
Resumo:
Die Kontroverse über den Glasübergang im Nanometerbereich, z. B. die Glas¬über¬gangs-temperatur Tg von dünnen Polymerfilmen, ist nicht vollständig abgeschlossen. Das dynamische Verhalten auf der Nanoskala ist stark von den einschränkenden Bedingungen abhängig, die auf die Probe wirken. Dünne Polymerfilme sind ideale Systeme um die Dynamik von Polymerketten unter der Einwirkung von Randbedingungen zu untersuchen, wie ich sie in dieser Arbeit variiert habe, um Einblick in dieses Problem zu erhalten.rnrnResonanzverstärkte dynamische Lichtstreuung ist eine Methode, frei von z.B. Fluoreszenzmarkern, die genutzt werden kann um in dünnen Polymerfilmen dynamische Phänomene