51 resultados para time resolved spectra
Resumo:
Die vorliegende Arbeit besteht aus zwei Teilen: Im ersten Teil der Arbeit werden supramolekulare Strukturen betrachtet, die durch unterschiedliche Fällungsbedingungen von Polyethylenoxid-block-oligo-p-benzamid-copolymeren erhalten wurden. Durch tropfenweise Zugabe des gelösten Polymers zu Chloroform, ein für Polyethylenoxid selektives Lösemittel, konnten verschiedenste Aggregate hergestellt werden. Von großen Hohlkugel mit einem Durchmesser von mehreren Mikrometern, bis zu kleinen Stäbchen mit den Abmessungen von zehn Nanometern in der Breite und einigen hundert Nanometern Länge, konnten beobachtet werden.rnDer Hauptteil der Arbeit handelt von der Synthese und Charakterisierung eines neuen, konjugierten Oligomers: Oligothiophencarbonsäureamid. Das hierfür nötige Monomer, eine 2-Aminothiophen-5-carbonsäure konnte mittels Gewald-Synthese, eine multikomponenten Ringschlussreaktion dargestellt werden. Diese Methode erlaubt die Herstellung von vierfach substituierten Thiophenen, wobei 3- und 4-Position meist Alkylketten und Ester sind. Das so hergestellte Material konnte in der stufenweise Synthese von Oligothiophencarbonsäureamiden genutzt werden. Die neuen Oligomere zeigten interessante Absorptions- und Fluoreszenzeigenschaften. In Dichlormethan wurde eine bathochrome Verschiebung der Absorptionsbande in Abhängigkeit der Oligomerlänge beobachtet. Das Pentamer erreichte eine Absorptionsenergie, die der Bande des Polythiophencarbonsäureamids entspricht, was bedeutetet, dass die effektive Konjugationslänge erreicht wurde. Im Gegensatz zu den Messungen in Dichlormethan, zeigten die Oligomere Aggregationstendenzen ab dem Trimer in N,N-Dimethylformamid. Die auftretende Charge-Transfer Bande verschwand mit steigenden Konzentrationen. Eine mögliche hypsochrome Verschiebung dieser Bande, deutet auf eine Bildung von H Aggregaten hin. Fluoreszenz und zeitaufgelöste Fluoreszenzmessungen ergaben die für konjugierte Systeme zu erwartenden Effekte. Die Konjugation entlang des Amids konnte ebenfalls mittels quantenmechanischer Berechnung nachgewiesen werden.
Resumo:
I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.
Resumo:
Die Erzeugung von Elektronenstrahlen hoher Intensität (I$geq$2,mA) und hoher Spinpolarisation (P$geq$85%) ist für die Experimente an den geplanten glqq Linac Ringgrqq Electron--Ion--Collidern (z.B. eRHIC am Brookhaven National Laboratory) unabdingbar, stellt aber zugleich eine enorme Herausforderung dar. Die Photoemission aus ce{GaAs}--basierten Halbleitern wie z.B. den in dieser Arbeit untersuchten GaAlAs/InGaAlAs Quanten--Übergittern zeichnet sich zwar durch eine hohe Brillanz aus, die geringe Quantenausbeute von nur ca. 1% im Bereich maximaler Polarisation erfordert jedoch hohe Laserintensitäten von mehreren Watt pro $text{cm}^{2}$, was erhebliche thermische Probleme verursacht. rnrnIn dieser Arbeit konnte zunächst gezeigt werden, dass die Lebensdauer einer Photokathode mit steigender Laserleistung bzw. Temperatur exponentiell abnimmt. Durch Einbringen eines DBR--Spiegels zwischen die aktive Zone der Photokathode und ihr Substrat wird ein Großteil des ungenutzten Laserlichts wieder aus dem Kristall herausreflektiert und trägt somit nicht zur Erwärmung bei. Gleichzeitig bildet der Spiegel zusammen mit der Grenzfläche zum Vakuum eine Resonator--Struktur aus, die die aktive Zone umschließt. Dadurch kommt es für bestimmte Wellenlängen zu konstruktiver Interferenz und die Absorption in der aktiven Zone erhöht sich. Beide Effekte konnten durch vergleichenden Messungen an Kathoden mit und ohne DBR--Spiegel nachgewiesen werden. Dabei ergibt sich eine gute Übereinstimmung mit der Vorhersage eines Modells, das auf der dielektrischen Funktion der einzelnen Halbleiterstrukturen beruht. Von besonderer praktischer Bedeutung ist, dass die DBR--Kathode für einen gegebenen Photoemissions-strom eine um einen Faktor $geq$,3{,}5 kleinere Erwärmung aufweist. Dies gilt über den gesamten Wellenlängenbereich in dem die Kathode eine hohe Strahlpolarisation (P$>$80%) produzieren kann, auch im Bereich der Resonanz.rnAus zeitaufgelösten Messungen der Ladungsverteilung und Polarisation lassen sich sowohl Rückschlüsse über die Transportmechanismen im Inneren einer Kathode als auch über die Beschaffenheit ihrer Oberfläche ziehen. Im Rahmen dieser Dissertation konnte die Messgeschwindigkeit der verwendeten Apparatur durch den Einbau eines schnelleren Detektors und durch eine Automatisierung der Messprozedur entscheidend vergrößert und die resultierende Zeitauflösung mit jetzt 1{,}2 Pikosekunden annähernd verdoppelt werden.rnrnDie mit diesen Verbesserungen erhaltenen Ergebnisse zeigen, dass sich der Transport der Elektronen in Superlattice--Strukturen stark vom Transport in den bisher untersuchten Bulk--Kristallen unterscheidet. Der Charakter der Bewegung folgt nicht dem Diffusionsmodell, sondern gibt Hinweise auf lokalisierte Zustände, die nahe der Leitungsbandunterkante liegen und Elektronen für kurze Zeit einfangen können. Dadurch hat die Impulsantwort einer Kathode neben einem schnellen Abfall des Signals auch eine größere Zeitkonstante, die selbst nach 30,ps noch ein Signal in der Größenordnung von ca. 5textperthousand der Maximalintensität erzeugt.
Resumo:
This thesis presents a study of the charge generation, transport, and recombination processes in organic solar cells performed with time-resolved experimental techniques. Organic solar cells based on polymers can be solution-processed on large areas and thus promise to become an inexpensive source of renewable energy. Despite significant improvements of the power conversion efficiency over the last decade, the fundamental working principles of organic solar cells are still not fully understood. It is the aim of this thesis to clarify the role of different performance limiting processes in organic solar cells and to correlate them with the molecular structure of the studied materials, i.e. poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). By combining time-of-flight charge transport measurements, transient absorption spectroscopy, a newly developed experimental technique called time delayed double pulse experiment and drift-diffusion simulations a comprehensive analysis of the working principles of P3HT:PCBM solar cells could be performed. It was found that the molecular structure of P3HT (i.e. the regioregularity) has a pronounced influence on the morphology of thin films of pristine P3HT and of blends of P3HT with PCBM. This morphology in turn affected the charge transport properties as well as the charge generation and recombination kinetics. Well-ordered regioregular P3HT was found to be characterized by a high charge carrier mobility, efficient charge generation and low but field-dependent (non-geminate) recombination. Importantly, the charge generation yield was found to be independent of temperature and applied electric field as opposed to the expectations of the Onsager-Braun model that is commonly applied to describe the temperature and field dependence of charge generation in organic solar cells. These properties resulted in a reasonably good power conversion efficiency. In contrast to this, amorphous regiorandom P3HT was found to show poor charge generation, transport and recombination properties that combine to a much lower power conversion efficiency.
Resumo:
In der marinen Grenzschicht beeinflussen reaktive Iodspezies wie z.B. I2 sowie aliphatische Amine eine Vielzahl atmosphärischer Prozesse, vor allem bei der Partikelneubildung spielen sie eine entscheidende Rolle. Allerdings stellt die Quantifizierung dieser Verbindungen im Spurenbereich immer noch eine große analytische Herausforderung dar. rnAus diesem Grund wurde im Rahmen der vorliegenden Arbeit das GTRAP-AMS (Gaseous compound trapping in artificially generated particles – aerosol mass spectrometry) entwickelt, um gasförmiges I2 und aliphatische Amine zu bestimmen. Hierbei wird ein Flugzeit-Aerosolmassenspektrometer (ToF-AMS), das ursprünglich für die on-line Charakterisierung von Aerosolen entwickelt wurde, mit einer GTRAP-Einheit gekoppelt. Im Fall von I2 werden mit Hilfe eines pneumatischen Zerstäubers a-Cyclodextrin/NH4Br-Partikel erzeugt, die mit dem gasförmigen I2 innerhalb der GTRAP-Einheit eine Einschlussverbindung bilden und dieses dadurch selektiv in die Partikelphase aufnehmen. Für die on-line Bestimmung gasförmiger aliphatischer Amine dagegen wurde Phosphorsäure als partikulärer Reaktionspartner eingesetzt. Nach Optimierung des GTRAP-AMS Systems wurde sowohl für I2 als auch für die aliphatischen Amine eine Nachweisgrenze im sub-ppb-Bereich für eine Zeitauflösung zwischen 1 und 30 min erhalten. Als erstes wurde das GTRAP-AMS System zur Charakterisierung von Permanentdenudern eingesetzt, um deren I2-Aufnahmefähigkeit und Wiederverwendbarkeit im Vergleich zu den herkömmlichen einmal verwendbaren a-Cyclodextrin Denudern zu testen.rnIm Anschluss daran wurde das GTRAP-AMS für die Bestimmung zeitlich aufgelöster I2- Emissionsraten ausgewählter Makroalgen unter dem Einfluss von Ozon eingesetzt. Die Kenntnis der Emissionsraten iodhaltiger Verbindungen der wichtigsten weltweit vorkommenden Makroalgen ist für die Modellierung der Iodchemie in der marinen Grenzschicht von besonderer Bedeutung. Die Resultate zeigen, dass verschiedene Makroalgen sowohl unterschiedliche zeitlich aufgelöste I2-Emissionsprofile als auch Gesamtemissionsraten liefern. Im Vergleich zu den iodorganischen Verbindungen ist die Gesamtemissionsrate an I2 allerdings eine bis zwei Größenordnungen größer. Dies und die deutlich kürzere atmosphärische Lebensdauer von I2 im Vergleich zu den iodorganischen Verbindungen führen dazu, dass I2 die dominierende iodhaltige Verbindung für die Bildung reaktiver Iodatome in der marinen Grenzschicht ist. rnDa über dem tropischen Atlantischen Ozean bislang jedoch nur ein geringer Anteil der IO-Konzentration durch die Oxidation von iodorganischen Verbindungen erklärt werden kann, wurden weitere Quellen für I2 erforscht. Deshalb wurden Kammerexperimente mit Mikrolagen durchgeführt, um deren Einfluss auf die I2-Freisetzung in die Atmosphäre zu untersuchen. Hierbei konnte gezeigt werden, dass die Anwesenheit von Mikroalgen (z.B. Coscinodiscus Wailesii) im Meerwasser zu einer erhöhten Freisetzung von I2 aus dem Meerwasser in die Atmosphäre führen kann. rnDes Weiteren wurden auch Versuche zu abiotischen Bildungswegen von I2 durchgeführt. Die Ergebnisse der Atmosphärensimulationsexperimente haben gezeigt, dass partikuläre Iodoxide durch organische Verbindungen zu I2 reduziert werden können, welches im Anschluss von der Partikelphase in die Gasphase übergehen kann und dort wieder für Gasphasenprozesse zur Verfügung steht.rn
Resumo:
Polykationen bilden mit DNA spontan Komplexe. Triebkraft ist der Entropiegewinn durch Freisetzung der Gegenionen auf den Polyelektrolyten. Solche Komplexe können in der Gentechnik verwendet werden, um fremde DNA in eine Zelle einzuschleusen. Dies bezeichnet man als Gentransfektion. In dieser Arbeit werden erstmals bürstenförmige Polykationen mit wurmförmiger Topologie zur Gentransfektion verwendet. Dazu wurde die Komplexierung von DNA mit Bürstenpolymeren mit Poly-L-Lysin- und Polyvinylpyridinium-Seitenketten und linearen Polykationen untersucht. Die Komplexbildung verläuft in allen Fällen kinetisch kontrolliert, alle Polykationen bilden sphärische Komplexe, die Topologie hat keinen Einfluss auf die Komplexgröße. Komplexe aus Bürstenpolymeren transfizieren mehr als 25% der gesamten Zellpopulation bei Schweinehirnendothelzellen. Gegenüber dem kommerziellen Transfektionsmittel Lipofektamin konnte eine deutliche Steigerung um bis zu 400% erreicht werden. Komplexe, die mit linearen Analoga gebildet wurden, zeigten bei gleicher Komplexgröße Transfektionsraten unter 5%. Freisetzungsversuche zeigen, dass die Komplexe, die gut transfizieren, recht labil sind, also die DNA unter Kompetitoreinfluss freisetzen können. Stabile Komplexe haben geringe Transfektionseffizienzen. Ebenso wichtig ist der Schutz der DNA vor Abbau durch DNase. Die PVP-Bürste bietet als einziges der untersuchten Polykationen diesen Schutz und zeigt auch die besten Transfektionsraten. Zusätzlich zu der medizinischen Anwendung wurde die Kinetik der Komplexbildung untersucht. Dazu wurde ein spezieller Aufbau entwickelt, der es ermöglicht die Streuintensität der Komplexlösung bei kleinen Streuwinkeln zeitaufgelöst im Millisekundenbereich zu detektieren. Die Komplexbildung verläuft diffusionskontrolliert, im Bereich von Ladungsverhältnissen (positive zu negativen Ladungen) von 1.8 bis 4.0 schließt sich ein fraktales Wachstum an.
Resumo:
Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.
Resumo:
In this thesis mainly two alternating indenofluorene-phenanthrene copolymers were investigated with a variety of spectroscopic and optoelectronic experiments. The different experimental techniques allowed to retrieve deeper insights into their unique optical as well as optoelectronic properties. The motivation of the research presented in this work was to correlate their photophysical properties with respect to their application in electrically pumped lasing. This thesis begins with the description of optical properties studied by classical absorption and emission spectroscopy and successively describes an overall picture regarding their excited state dynamics occurring after photoexcitation studied by time-resolved spectroscopy. The different spectroscopic methods do not only allow to elucidate the different optical transitions occurring in this class of materials, but also contribute to a better understanding of exciton dynamics and exciton interaction with respect to the molecular structure as well as aggregation and photooxidation of the polymers. Furthermore, the stimulated emission properties were analyzed by amplified spontaneous emission (ASE) experiments. Especially one of the investigated materials, called BLUE-1, showed outstanding optical properties including a high optical gain, a low threshold for ASE and low optical losses. Apart from the optical experiments, the charge carrier mobility was measured with the time-of-flight technique and a comparably high hole mobility on the order of 1 x 10-² cm²/(Vs) was determined for BLUE-1 which makes this material promising for organic lasing. The impact of the high charge carrier mobility in this material class was further analyzed in different optoelectronic devices such as organic LEDs (OLEDs) and organic solar cells.
Resumo:
This thesis deals with the investigation of exciton and charge dynamics in hybrid solar cells by time-resolved optical spectroscopy. Quasi-steady-state and transient absorption spectroscopy, as well as time-resolved photoluminescence spectroscopy, were employed to study charge generation and recombination in solid-state organic dye-sensitized solar cells, where the commonly used liquid electrolyte is replaced by an organic solid hole transporter, namely 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD), and polymer-metal oxide bulk heterojunction solar cells, where the commonly used fullerene acceptor [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is replaced by zinc oxide (ZnO) nanoparticles. By correlating the spectroscopic results with the photovoltaic performance, efficiency-limiting processes and processes leading to photocurrent generation in the investigated systems are revealed. rnIt is shown that the charge generation from several all-organic donor-π-bridge-acceptor dyes, specifically perylene monoimide derivatives, employed in solid-state dye-sensitized solar cells, is strongly dependent on the presence of a commonly used additive lithium bis(trifluoromethanesulphonyl)imide salt (Li-TFSI) at the interface. rnMoreover, it is shown that charges can not only be generated by electron injection from the excited dye into the TiO2 acceptor and subsequent regeneration of the dye cation by the hole transporter, but also by an alternative mechanism, called preceding hole transfer (or reductive quenching). Here, the excited dye is first reduced by the hole transporter and the thereby formed anion subsequently injects an electron into the titania. This additional charge generation process, which is only possible for solid hole transporters, helps to overcome injection problems. rnHowever, a severe disadvantage of solid-state dye-sensitized solar cells is re-vealed by monitoring the transient Stark effect on dye molecules at the inter-face induced by the electric field between electrons and holes. The attraction between the negative image charge present in TiO2, which is induced by the positive charge carrier in the hole transporter due to the dielectric contrast between the organic spiro-MeOTAD and inorganic titania, is sufficient to at-tract the hole back to the interface, thereby increasing recombination and suppressing the extraction of free charges.rnBy investigating the effect of different dye structures and physical properties on charge generation and recombination, design rules and guidelines for the further advancement of solid-state dye-sensitized solar cells are proposed.rnFinally, a spectroscopic study on polymer:ZnO bulk heterojunction hybrid solar cells, employing different surfactants attached to the metal oxide nanoparticles, was performed to understand the effect of surfactants upon photovoltaic behavior. By applying a parallel pool analysis on the transient absorption data, it is shown that suppressing fast recombination while simultaneously maintaining the exciton splitting efficiency by the right choice of surfactants leads to better photovoltaic performances. Suppressing the fast recombination completely, whilst maintaining the exciton splitting, could lead to a doubling of the power conversion efficiency of this type of solar cell.
Resumo:
Graphene nanoribbons (GNRs), which are defined as nanometer-wide strips of graphene, are attracting an increasing attention as one on the most promising materials for future nanoelectronics. Unlike zero-bandgap graphene that cannot be switched off in transistors, GNRs possess open bandgaps that critically depend on their width and edge structures. GNRs were predominantly prepared through “top-down” methods such as “cutting” of graphene and “unzipping” of carbon nanotubes, but these methods cannot precisely control the structure of the resulting GNRs. In contrast, “bottom-up” chemical synthetic approach enables fabrication of structurally defined and uniform GNRs from tailor-made polyphenylene precursors. Nevertheless, width and length of the GNRs obtainable by this method were considerably limited. In this study, lateral as well as longitudinal extensions of the GNRs were achieved while preserving the high structural definition, based on the bottom-up solution synthesis. Initially, wider (~2 nm) GNRs were synthesized by using laterally expanded monomers through AA-type Yamamoto polymerization, which proved more efficient than the conventional A2B2-type Suzuki polymerization. The wider GNRs showed broad absorption profile extending to the near-infrared region with a low optical bandgap of 1.12 eV, which indicated a potential of such GNRs for the application in photovoltaic cells. Next, high longitudinal extension of narrow (~1 nm) GNRs over 600 nm was accomplished based on AB-type Diels–Alder polymerization, which provided corresponding polyphenylene precursors with the weight-average molecular weight of larger than 600,000 g/mol. Bulky alkyl chains densely installed on the peripheral positions of these GNRs enhanced their liquid-phase processability, which allowed their formation of highly ordered self-assembled monolayers. Furthermore, non-contact time-resolved terahertz spectroscopy measurements demonstrated high charge-carrier mobility within individual GNRs. Remarkably, lateral extension of the AB-type monomer enabled the fabrication of wider (~2 nm) and long (>100 nm) GNRs through the Diels–Alder polymerization. Such longitudinally extended and structurally well-defined GNRs are expected to allow the fabrication of single-ribbon transistors for the fundamental studies on the electronic properties of the GNRs as well as contribute to the development of future electronic devices.
Resumo:
In the early 20th century, Gouy, Chapman, and Stern developed a theory to describe the capacitance and the spatial ion distribution of diluted electrolytes near an electrode. After a century of research, considerable progress has been made in the understanding of the electrolyte/electrode interface. However, its molecular-scale structure and its variation with an applied potential is still under debate. In particular for room-temperature ionic liquids, a new class of solventless electrolytes, the classical theories for the electrical double layer are not applicable. Recently, molecular dynamics simulations and phenomenological theories have attempted to explain the capacitance of the ionic liquid/electrode interface with the molecular-scale structure and dynamics of the ionic liquid near the electrode. rnHowever, experimental evidence is very limited. rnrnIn the presented study, the ion distribution of an ionic liquid near an electrode and its response to applied potentials was examined with sub-molecular resolution. For this purpose, a new sample chamber was constructed, allowing in situ high energy X-ray reflectivity experiments under potential control, as well as impedance spectroscopy measurements. The combination of structural information and electrochmical data provided a comprehensive picture of the electric double layer in ionic liquids. Oscillatory charge density profiles were found, consisting of alternating anion- and cation-enriched layers at both, cathodic and anodic, potentials. This structure was shown to arise from the same ion-ion correlations dominating the liquid bulk structure that were observed as a distinct X-ray diffraction peak. Therefore, existing physically motivated models were refined and verified by comparison with independent measurements. rnrnThe relaxation dynamics of the interfacial structure upon potential variation were studied by time resolved X-ray reflectivity experiments with sub-millisecond resolution. The observed relaxation times during charging/discharging are consistent with the impedance spectroscopy data revealing three processes of vastly different characteristic time-scales. Initially, the ion transport normal to the interface happens on a millisecond-scale. Another 100-millisecond-scale process is associated with molecular reorientation of electrode-adsorbed cations. Further, a minute-scale relaxation was observed, which is tentatively assigned to lateral ordering within the first layer.
Resumo:
Die biologische Stickstofffixierung durch Molybdän-haltige Nitrogenasen sowie die Erforschung des zugrundeliegenden komplexen Mechanismus (N2-Aktivierung an Metall-Zentren, 6-fache Protonierung und Reduktion, N–N Bindungsspaltung unter Bildung von Ammoniak) ist von erheblichem Interesse. Insbesondere Molybdän-Komplexe wurden bereits erfolgreich als Modellverbindungen für die Untersuchung elementarer Einzelschritte der N2-Aktivierung eingesetzt. Durch die Verwendung von Triamidoamin-Liganden ist es Schrock et al. sogar gelungen mehrere Katalysezyklen zu durchlaufen und einen Mechanismus zu formulieren. Trotz der sterisch anspruchsvollen Substituenten in den Schrock-Komplexen ist die Umsatzrate dieses homogenen Katalysators, aufgrund Komplex-Deaktivierung infolge intermolekularer Reaktionen wie Dimerisierung und Disproportionierung, limitiert. In der vorliegenden Arbeit wurden einige dieser Herausforderungen angegangen und die aktiven Spezies auf einer Festphase immobilisiert, um intermolekulare Reaktionen durch räumliche Isolierung der Komplexe zu unterdrücken.rnEin Polymer-verankertes Analogon des Schrock Nitrido-Molybdän(VI)-Komplexes wurde auf einem neuen Reaktionsweg synthetisiert. Dieser beinhaltet nur einen einzigen Reaktionsschritt, um die funktionelle Gruppe „MoN“ einzuführen. Protonierung des immobilisierten Nitrido-Molybdän(VI)-Komplexes LMoVIN (L = Polymer-verankerter Triamidoamin-Ligand) mit 2,6-Lutidinium liefert den entsprechenden Imido-Molybdän(VI)-Komplex. Durch anschließende Ein-Elektronen-Reduktion mit Cobaltocen wird der Polymer-angebundene Imido-Molybdän(V)-Komplex erhalten, bewiesen durch EPR-Spektroskopie (g1,2,3 = 1.989, 1.929, 1.902). Durch die Immobilisierung und die effektive räumliche Separation der Reaktionszentren auf der Festphase werden bimolekulare Nebenreaktionen, die oft in homogenen Systemen auftreten, unterdrückt. Dies ermöglicht zum ersten Mal die Darstellung des Imido-Molybdän(V)-Intermediates des Schrock-Zyklus.rnEPR-Spektren des als Spin-Label eingeführten immobilisierten Nitrato-Kupfer(II)-Komplexes wurden unter verschiedenen Bedingungen (Lösungsmittel, Temperatur) aufgenommen, wobei sich eine starke Abhängigkeit zwischen der Zugänglichkeit und Reaktivität der immobilisierten Reaktionszentren und der Art des Lösungsmittels zeigte. Somit wurde die Reaktivität von LMoVIN gegenüber Protonen und Elektronen, welches zur Bildung von NH3 führt, unter Verwendung verschiedener Lösungsmittel untersucht und optimiert. Innerhalb des kugelförmigen Polymers verläuft die Protonierung und Reduktion von LMoVIN stufenweise. Aktive Zentren, die sich an der „äußeren Schale“ des Polymers befinden, sind gut zugänglich und reagieren schnell nach H+/e− Zugabe. Aktive Zentren im „Inneren des Polymers“ hingegen sind schlechter zugänglich und zeigen langsame diffusions-kontrollierte Reaktionen, wobei drei H+/e− Schritte gefolgt von einer Ligandenaustausch-Reaktion erforderlich sind, um NH3 freizusetzen: LMoVIN LMoVNH LMoIVNH2 LMoIIINH3 und anschließender Ligandenaustausch führt zur Freisetzung von NH3.rnIn einem weiteren Projekt wurde der Bis(ddpd)-Kupfer(II)-Komplex EPR-spektroskopisch in Hinblick auf Jahn−Teller-Verzerrung und -Dynamik untersucht. Dabei wurden die EPR-Spektren bei variabler Temperatur (70−293 K) aufgenommen. Im Festkörperspektrum bei T < 100 K erscheint der Kupfer(II)-Komplex als gestreckter Oktaeder, wohingegen das EPR-Spektrum bei höheren Temperaturen g-Werte aufzeigt, die einer pseudo-gestauchten oktaedrischen Kupfer(II)-Spezies zuzuordnen sind. Diese Tatsache wird einem intramolekularen dynamischen Jahn−Teller Phänomen zugeschrieben, welcher bei 100 K eingefroren wird.
Resumo:
Die vorliegende Arbeit behandelt den fluid-kristallinen Phasenübergang sowie den Glasübergang anhand von kolloidalen Hart-Kugel(HK)-Modellsystemen. Die Untersuchungen erfolgen dabei im Wesentlichen mit unterschiedlichen Lichtstreumethoden und daher im reziproken Raum. rnDie Analyse der Kristallisationskinetik zeigt, dass es bei der Kristallisation zu signifikanten Abweichungen vom Bild der klassischen Nukleationstheorie (CNT) kommt. Diese geht von einem einstufigen Nukleationsprozess aus, wohingegen bei den hier durchgeführten Experimenten ein mehrstufiger Prozess beobachtet wird. Vor der eigentlichen Kristallisation kommt es zunächst zur Nukleation einer metastabilen Zwischenphase, sogenannter Precursor. In einer zweiten Stufe erfolgt innerhalb der Precursor die eigentliche Nukleation der Kristallite. rnDurch weitere Analyse und den Vergleich des Kristallisations- und Verglasungsszenarios konnte das Konzept der Precursornukleation auf den Vorgang der Verglasung erweitert werden. Während die Kristallnukleation oberhalb des Glasübergangspunktes zum Erliegen kommt, bleibt der Prozess der Precursornukleation auch bei verglasenden Proben erhalten. Ein Glas erstarrt somit in einem amorphen Zustand mit lokalen Precursorstrukturen. Die Korrelation der gemessenen zeitlichen Entwicklung der strukturellen sowie der dynamischen Eigenschaften zeigt darüber hinaus, dass das bisher unverstandene Ageing-Phänomen von HK-Gläsern mit der Nukleation von Precursorn zusammenhängt.rnEin solches mehrstufiges Szenario wurde bereits in früheren Veröffentlichungen beobachtet. Die im Rahmen dieser Arbeit durchgeführten Messungen ermöglichten erstmals die Bestimmung von Kristallnukleationsratendichten (Kristall-NRD) und Ratendichten für die Precursornukleation bis über den Glasübergangspunkt hinaus. Die Kristall-NRD bestätigen die Resultate aus anderen experimentellen Arbeiten. Die weiteren Analysen der Kristall-NRD belegen, dass die fluid-kristalline Grenzflächenspannung bei der Nukleation entgegen den Annahmen der CNT nicht konstant ist, sondern mit ansteigendem Volumenbruch linear zunimmt. Die Erweiterung der CNT um eine linear zunehmende Grenzflächenspannung ermöglichte eine quantitative Beschreibung der gemessenen Kristall- sowie der Precursor-NRD, was den Schluss zulässt, dass es sich in beiden Fällen um einen Boltzmann-aktivierten Prozess handelt. rnUm die beobachteten Abweichungen des Nukleationsprozesses vom Bild der CNT näher zu untersuchen, wurden die kollektiven Partikeldynamiken in stabilen Fluiden und metastabilen Schmelzen analysiert. Im klassischen Bild wird angenommen, dass die kollektive Partikeldynamik beim Vorgang der Nukleation keine Rolle spielt. Anhand der Resultate zeigen sich Abweichungen in der Dynamik stabiler Fluide und metastabiler Schmelzen. Während die kollektive Partikeldynamik in der stabilen Schmelze von der Struktur entkoppelt ist, tritt oberhalb des Phasenübergangspunktes eine Kopplung von Struktur und Dynamik auf. Dabei treten die Abweichungen zunächst in der Umgebung des ersten Strukturfaktormaximums und somit bei den am stärksten besetzten Moden auf. Mit steigender Unterkühlung nehmen die Anzahl der abweichenden Moden sowie die Stärke der Abweichungen zu. Dieses Phänomen könnte einen signifikanten Einfluss auf den Nukleationsprozess und somit auf die Kristallisationskinetik haben. Die Analyse der Dynamik im stabilen Fluid zeigt darüber hinaus Hinweise auf eine Singularität bei Annäherung an den fluid-kristallinen Phasenübergangspunkt.rnDes Weiteren wurden im Rahmen der vorliegenden Arbeit erstmals Ratendichten für die heterogene Nukleation eines HK-Systems an einer flachen Wand mittels statischer Lichtstreuung (SLS) bestimmt. Die Ergebnisse der Messung zeigen, dass die Nukleationsbarriere der heterogenen Nukleation annähernd Null ist und folglich eine vollständige Benetzung der Wand mit einer kristallinen Monolage vorliegt. Die Erweiterung der Untersuchungen auf gekrümmte Oberflächen in Form von sphärischen Partikeln (Seeds) stellt die erste experimentelle Arbeit dar, die den Einfluss eines Ensembles von Seeds auf die Kristallisationskinetik in HK-Systemen untersucht. Die Kristallisationskinetik und die Mikrostruktur werden abhängig von Größe und Anzahldichte der Seed-Partikel signifikant beeinflusst. In Übereinstimmung mit konfokalmikroskopischen Experimenten und Simulationen spielt dabei das Radienverhältnis der Majoritäts- zur Minoritätskomponente eine entscheidende Rolle.
Resumo:
Während der letzten Jahre wurde für Spinfilter-Detektoren ein wesentlicher Schritt in Richtung stark erhöhter Effizienz vollzogen. Das ist eine wichtige Voraussetzung für spinaufgelöste Messungen mit Hilfe von modernen Elektronensp ektrometern und Impulsmikroskopen. In dieser Doktorarbeit wurden bisherige Arbeiten der parallel abbildenden Technik weiterentwickelt, die darauf beruht, dass ein elektronenoptisches Bild unter Ausnutzung der k-parallel Erhaltung in der Niedrigenergie-Elektronenbeugung auch nach einer Reflektion an einer kristallinen Oberfläche erhalten bleibt. Frühere Messungen basierend auf der spekularen Reflexion an einerrnW(001) Oberfläche [Kolbe et al., 2011; Tusche et al., 2011] wurden auf einenrnviel größeren Parameterbereich erweitert und mit Ir(001) wurde ein neues System untersucht, welches eine sehr viel längere Lebensdauer der gereinigten Kristalloberfläche im UHV aufweist. Die Streuenergie- und Einfallswinkel-“Landschaft” der Spinempfindlichkeit S und der Reflektivität I/I0 von gestreuten Elektronen wurde im Bereich von 13.7 - 36.7 eV Streuenergie und 30◦ - 60◦ Streuwinkel gemessen. Die dazu neu aufgebaute Messanordnung umfasst eine spinpolarisierte GaAs Elektronenquellernund einen drehbaren Elektronendetektor (Delayline Detektor) zur ortsauflösenden Detektion der gestreuten Elektronen. Die Ergebnisse zeigen mehrere Regionen mit hoher Asymmetrie und großem Gütefaktor (figure of merit FoM), definiert als S2 · I/I0. Diese Regionen eröffnen einen Weg für eine deutliche Verbesserung der Vielkanal-Spinfiltertechnik für die Elektronenspektroskopie und Impulsmikroskopie. Im praktischen Einsatz erwies sich die Ir(001)-Einkristalloberfläche in Bezug auf längere Lebensdauer im UHV (ca. 1 Messtag), verbunden mit hoher FOM als sehr vielversprechend. Der Ir(001)-Detektor wurde in Verbindung mit einem Halbkugelanalysator bei einem zeitaufgelösten Experiment im Femtosekunden-Bereich am Freie-Elektronen-Laser FLASH bei DESY eingesetzt. Als gute Arbeitspunkte erwiesen sich 45◦ Streuwinkel und 39 eV Streuenergie, mit einer nutzbaren Energiebreite von 5 eV, sowie 10 eV Streuenergie mit einem schmaleren Profil von < 1 eV aber etwa 10× größerer Gütefunktion. Die Spinasymmetrie erreicht Werte bis 70 %, was den Einfluss von apparativen Asymmetrien deutlich reduziert. Die resultierende Messungen und Energie-Winkel-Landschaft zeigt recht gute Übereinstimmung mit der Theorie (relativistic layer-KKR SPLEED code [Braun et al., 2013; Feder et al.,rn2012])
Resumo:
Structure characterization of nanocrystalline intermediates and metastable phases is of primary importance for a deep understanding of synthetic processes undergoing solid-to-solid state phase transitions. Understanding the evolution from the first nucleation stage to the final synthetic product supports not only the optimization of existing processes, but might assist in tailoring new synthetic paths. A systematic investigation of intermediates and metastable phases is hampered because it is impossible to produce large crystals and only in few cases a pure synthetic product can be obtained. Structure investigation by X-ray powder diffraction methods is still challenging on nanoscale, especially when the sample is polyphasic. Electron diffraction has the advantage to collect data from single nanoscopic crystals, but is limited by data incompleteness, dynamical effects and fast deterioration of the sample under the electron beam. Automated diffraction tomography (ADT), a recently developed technique, making possible to collect more complete three-dimensional electron diffraction data and to reduce at the same time dynamical scattering and beam damage, thus allowing to investigate even beam sensitive materials (f.e. hydrated phases and organics). At present, ADT is the only technique able to deliver complete three-dimensional structural information from single nanoscopic grains, independently from other surrounding phases. Thus, ADT is an ideal technique for the study of on-going processes where different phases exist at the same time and undergo several structural transitions. In this study ADT was used as the main technique for structural characterization for three different systems and combined subsequently with other techniques, among which high-resolution transmission electron microscopy (HRTEM), cryo-TEM imaging, X-ray powder diffraction (XRPD) and energy disperse X-ray spectroscopy (EDX).rnAs possible laser host materials, i.e. materials with a broad band emission in the near-infrared region, two unknown phases were investigated in the ternary oxide system M2O-Al2O3-WO3 (M = K, Na). Both phases exhibit low purity as well as non-homogeneous size distribution and particle morphology. The structures solved by ADT are also affected by pseudo-symmetry. rnSodium titanate nanotubes and nanowires are both intermediate products in the synthesis of TiO2 nanorods which are used as additives to colloidal TiO2 film for improving efficiency of dye-sensitized solar cells (DSSC). The structural transition from nantubes to nanowires was investigated in a step by step time-resolved study. Nanowires were discovered to consist of a hitherto unknown phase of sodium titanate. This new phase, typically affected by pervasive defects like mutual layer shift, was structurally determined ab-initio on the basis of ADT data. rnThe third system is related with calcium carbonate nucleation and early crystallization. The first part of this study is dedicated to the extensive investigations of calcium carbonate formation in a step by step analysis, up to the appearance of crystalline individua. The second part is dedicated to the structure determination by ADT of the first-to-form anhydrated phase of CaCO3: vaterite. An exhaustive structure analysis of vaterite had previously been hampered by diffuse scattering, extra periodicities and fast deterioration of the material under electron irradiation. rn