20 resultados para Plasma-membrane Transport
Resumo:
Während der Myelinbildung im zentralen Nervensystem (ZNS) umwinden Oligodendrozyten mit Ausläufern ihrer Plasmamembran mehrfach das Axon. Myelin ermöglicht die saltatorische Erregungsweiterleitung entlang der Axone und ist zudem für die Aufrechterhaltung der axonalen Integrität erforderlich (Edgar and Garbern, 2004). Ein Oligodendrozyt myelinisiert bis zu 40 Axonsegmente gleichzeitig, wodurch er in seiner aktivsten Myelinisierungsphase 5 bis 50 x 103 µm2 Membranfläche pro Tag produziert (Pfeiffer et al., 1993). Die vollständig ausgebildete Myelinscheide besteht aus Subdomänen mit charakteristischen Protein- und Lipidzusammensetzungen. Die Entwicklung und der Erhalt der komplexen Myelinmembran erfordert die kontinuierliche Kommunikation zwischen Neuronen und Glia-Zellen, die Koordination der Protein- und Lipidsynthese sowie angepasste intrazelluläre Sortier- und Transportwege der Myelinkomponenten. Über die molekularen Mechanismen, die zur Ausbildung des Myelins und seiner Domänen führen, ist bisher nicht sehr viel bekannt. Im Rahmen dieser Arbeit wurden Endo- und Exozytosemechanismen von Myelinproteinen analysiert. Dabei wurden drei Proteine untersucht, die in unterschiedlichen Subdomänen der Myelinmembran des ZNS lokalisiert sind. Das Hauptmyelinprotein Proteolipid Protein (PLP), das Myelin-assoziierte Glykoprotein (MAG) und das Myelin Oligodendrozyten Glykoprotein (MOG). Die Exozytose des Hauptmyelinproteins PLP erfolgt möglicherweise durch sekretorische Lysosomen (Trajkovic et al., 2006) und ist Ca2+-abhängig. Interessanterweise konnte gezeigt werden, dass PLP, MAG und MOG unterschiedlichen endosomalen Transportwegen und Sortierprozessen unterliegen. PLP wird über einen Clathrin-unabhängigen, MAG und MOG hingegen über einen Clathrin-abhängigen Mechanismus endozytiert. Zudem gelangen die Proteine zu unterschiedlichen endosomalen Zielkompartimenten und recyceln zu verschiedenen oligodendroglialen Membrandomänen. Diese Ergebnisse legen nahe, dass die endosomale Sortierung und das Recycling der Myelinproteine, die für die Bildung der Subdomänen erforderliche Umgestaltung der oligodendroglialen Plasmamembran unterstützen.
Resumo:
Das zytoplasmatische Zytoskelett besteht aus drei Filamentsystemen, die aus Aktin, Tubulin und Intermediärfilamentproteinen aufgebaut sind und dreidimensionale Netzwerke ausbilden. Das Intermediärfilamentsystem, dem vor allem mechanische Stabilisierungsfunktionen zugesprochen werden, unterscheidet sich von den anderen durch seine Fähigkeit, spontan aus seinen Polypeptiduntereinheiten ohne weitere Kofaktoren zu polymerisieren und durch seinen unpolaren Aufbau. Es ist bis heute unbekannt, wie Intermediärfilamentnetzwerke in vivo moduliert werden und wie ihre Anordnung in den Kontext des Gesamtzytoskeletts koordiniert wird. Am Beispiel der epithelialen Intermediärfilamentproteine, den Keratinen, sollte daher untersucht werden, wie und wo neue Intermediärfilamente entstehen, welche Bedeutung den anderen Filamentsystemen bei dem Netzwerkaufbau und –Turn-Over zukommen und wie die Netzwerkbildung gesteuert wird. Zur Beantwortung dieser Fragestellungen wurden Zellklone hergestellt, die fluoreszierende Keratine synthetisieren. In der Zelllinie SK8/18-2, deren gesamtes Netzwerk aus derartigen Chimären aufgebaut ist, konnten anhand von mikroskopischen Zeitrafferaufnahmen der Fluoreszenzmuster Keratinfilamentvorläufer (KFP) identifiziert und deren Dynamik direkt in lebenden Zellen verfolgt werden. Es konnte gezeigt werden, dass die KFP in einem Plasmamembran-nahen Bereich entstehen, in dem sie zuerst als punktförmige Partikel detektiert werden. Nach einer initialen, sphäroidalen Wachstumsphase elongieren die Partikel zu kleinen Filamentstückchen. Diese können miteinander fusionieren und werden über ihre Enden in das periphere Netzwerk integriert. Der Wachstumsprozess ist gekoppelt an eine kontinuierliche, langsame Bewegung in Richtung auf das Zellzentrum. Diese Motilität sistiert vollständig nach pharmakologisch induziertem Abbau der Aktinfilamente. In Zeitraffer-aufnahmen kann jedoch in derartig behandelten Zellen ein wesentlich schnellerer Transport, der in verschiedene Richtungen verläuft und durch lange Ruhephasen unterbrochen wird, beobachtet werden. Dieser Modus, der gelegentlich auch in unbehandelten Zellen gefunden wurde, ist abhängig von intakten Mikrotubuli. Erst durch Zerstörung der Aktinfilamente und der Mikrotubuli erlischt die Motilität der KFPs vollständig. Bei der Suche nach Regulatoren der Keratinnetzwerkbildung wurde die p38 MAPK als zentraler Faktor identifiziert. Erstmals konnte eine direkte räumliche und zeitliche Korrelation zwischen einer spezifischen Enzymaktivität durch Nachweis der phosphorylierten p38 MAPK, der daraus folgenden Phosphorylierung eines Keratins, hier Serin 73 des Keratin 8, und der daraus resultierenden Veränderung des Netzwerkaufbaus, d. h. der Ausbildung von Keratingranula, nachgewiesen werden. Diese koordinierten Veränderungen wurden in unterschiedlichen Stresssituationen in verschiedenen Zellsystemen und in Zellen mit mutierten Keratinen beobachtet. Genetische (shRNA) und pharmakologische Manipulationen der p38 MAPK-Aktivität deuten auf einen engen kausalen Zusammenhang hin.
Resumo:
Flugfähige Insekten sind äußerst leistungsfähige Tiere. Ihre Flugmuskulatur ist das Gewebe mit der höchsten ATP-Umsatzrate im Tierreich. Der hohe Energieumsatz ist möglich durch einen vollständig aeroben Stoffwechsel der Flugmuskulatur, der durch die effiziente Sauerstoffversorgung über das Tracheensystem gewährleistet wird. Andererseits haben Insekten einen offenen Blutkreislauf, d.h. ihre Gewebe werden nicht über Kapillaren mit Substraten versorgt, sondern von der Hämolymphe umspült, die daher eine hohe Konzentration an energieliefernden Substraten haben muss. Als schnell verfügbares Substrat nutzen Wanderheuschrecken bei Beginn eines Fluges als Hauptsubstrat Trehalose, die in hoher Konzentration als Hämolymphzucker vorliegt (20 bis 40mal höhere Konzentration als Glucose). Trehalose ist, anders als Glucose, ein nicht-reduzierender Zucker und daher nicht toxisch. Allerdings muss das Disaccharid Trehalose zu Glucose hydrolysiert werden, bevor sie im Zellstoffwechsel verwertet werden kann. Diese Funktion erfüllt die Trehalase (EC 3.2.1.28), ein Enzym, das membrangebunden ist und nach Zellfraktionierung in der Mikrosomenfraktion erscheint. Es ist schon lange offensichtlich, dass die Aktivität der Trehalase regulierbar sein muss und zwar reversibel (eine Eigenschaft, die für Hydrolasen ungewöhnlich ist), der Mechanismus ist allerdings bislang nicht klar, da alle üblichen Typen von Aktivitätsregulation nicht verwirklicht zu sein scheinen. Die meisten Autoren vermuten, dass die Regulation über den Transport des Substrats erfolgt. Ein Trehalosetransporter konnte allerdings bisher in der Flugmuskulatur von Locusta nicht nachgewiesen werden. In dieser Arbeit stelle ich Experimente vor, die dafür sprechen, dass Trehalase als Ektoenzym aktiv ist (overte Form), während eine inaktive Form (latente Form) in Vesikeln im Cytoplasma vorliegt und per Exocytose reversibel in die Plasmamembran transloziert werden kann. Für die Testung dieser Arbeitshypothese nutzte ich Trehazolin, einen sehr spezifischen Inhibitor der Trehalase, der äußerst fest und dauerhaft im aktiven Zentrum des Enzyms bindet. Dazu war es nötig, die Flugmuskulatur zu fraktionieren, um die Effekte von Trehazolin auf die verschiedenen Formen der Trehalase (gebunden, löslich, overt, latent) zu analysieren. Mit der Arbeitshypothese vereinbar sind die folgenden Befunde: (1) In die Hämolymphe injiziertes Trehazolin hemmt bevorzugt die overte Trehalase und erst bei höheren Dosen und nach längerer Zeit die latente Form. (2) Trehazolin wirkt in hoher Dosis (50µg pro Tier) auch nach Verfütterung, allerdings stark abgeschwächt, da nach 24 Stunden ein signifikanter Effekt nur auf die overte, aber nicht auf die latente Form sichtbar war. (3) In einem Langzeitversuch über 30 Tage führte die einmalige Injektion von 20µg Trehazolin zu einer schnellen Hemmung der overten Trehalase, der eine verzögerte Hemmung der latenten Aktivität folgte. Der Zeitverlauf von Hemmung und Erholung spricht für eine Vorläufer-Produkt-Beziehung zwischen latenter und overter Form. (4) Flugaktivität der Tiere führt zu einer starken Verminderung der latenten Aktivität, falls Trehazolin in der Hämolymphe der Tiere vorhanden war. (5) Neuropeptide könnten die Translokation fördern. Insulin hat einen entsprechenden Effekt, der aber unabhängig ist von der Flugaktivität. (6) Der PI3-Kinasehemmstoff Wortmannin stabilisiert die latente Form der Trehalase. Auch andere Organe als die Flugmuskulatur besitzen Trehalase, aber mit deutlich geringerer Aktivität. In der Sprungmuskulatur könnte auch eine latente Form vorhanden sein, für Darm und Gehirn ist das nicht wahrscheinlich.
Resumo:
Oligodendrocytes form specialized plasma membrane extensions which spirally enwrap axons, thereby building up the myelin sheath. During myelination, oligodendrocytes produce large amounts of membrane components. Oligodendrocytes can be seen as a complex polarized cell type with two distinct membrane domains, the plasma membrane surrounding the cell body and the myelin membrane. SNARE proteins mediate the fusion of vesicular cargoes with their target membrane. We propose a model in which the major myelin protein PLP is transported by two different pathways. VAMP3 mediates the non-polarized transport of newly synthesized PLP via recycling endosomes to the plasma membrane, while transport of PLP from late endosomes/lysosomes to myelin is controlled by VAMP7. In the second part of the thesis, the role of exosome secretion in glia to axon signaling was studied. Further studies are required to clarify whether VAMP7 also controls exosome secretion. The thesis further focused on putative metabolic effects in the target neurons. Oligodendroglial exosomes showed no obvious influences on neuronal metabolic activity. Analysis of the phosphorylation levels of the neurofilament heavy subunit revealed a decrease in presence of oligodendrocytes, indicating effects of oligodendroglial exosomes on the neuronal cytoskeleton. Finally, candidates for kinases which are possibly activated upon influence of oligodendroglial exosomes and could influence neuronal survival were identified.
Resumo:
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein, which resembles a cell surface receptor, comprising a large ectodomain, a single spanning transmembrane part and a short C-terminal, cytoplasmic domain. It belongs to a conserved gene family, with over 17 members, including also the two mammalian APP homologues proteins APLP1 and APLP2 („amyloid precursor like proteins“). APP is encoded by 19 exons, of which exons 7, 8, and 15 can be alternatively spliced to produce three major protein isoforms APP770, APP751 and APP695, reflecting the number of amino acids. The neuronal APP695 is the only isoform that lacks a Kunitz Protease Inhibitor (KPI) domain in its extracellular portion whereas the two larger, peripheral APP isoforms, contain the 57-amino-acid KPI insert. rnRecently, research effort has suggested that APP metabolism and function is thought to be influenced by homodimerization and that the oligomerization state of APP could also play a role in the pathology of Alzheimer's disease (AD), by regulating its processing and amyloid beta production. Several independent studies have shown that APP can form homodimers within the cell, driven by motifs present in the extracellular domain, as well as in the juxtamembrane (JM) and transmembrane (TM) regions of the molecule, whereby the exact molecular mechanism and the origin of dimer formation remains elusive. Therefore, we focused in our study on the actual subcellular origin of APP homodimerization within the cell, an underlying mechanism, and a possible impact on dimerization properties of its homologue APLP1. Furthermore, we analyzed homodimerization of various APP isoforms, in particular APP695, APP751 and APP770, which differ in the presence of a Kunitz-type protease inhibitor domain (KPI) in the extracellular region. In order to assess the cellular origin of dimerization under different cellular conditions, we established a mammalian cell culture model-system in CHO-K1 (chinese hamster ovary) cells, stably overexpressing human APP, harboring dilysine based organelle sorting motifs at the very C-terminus [KKAA-Endoplasmic Reticulum (ER); KKFF-Golgi]. In this study we show that APP exists as disulfide-bound, SDS-stable dimers, when it was retained in the ER, unlike when it progressed further to the cis-Golgi, due to the KKFF ER exit determinant. These stable APP complexes were isolated from cells, and analyzed by SDS–polyacrylamide gel electrophoresis under non-reducing conditions, whereas strong denaturing and reducing conditions completely converted those dimers to monomers. Our findings suggested that APP homodimer formation starts early in the secretory pathway and that the unique oxidizing environment of the ER likely promotes intermolecular disulfide bond formation between APP molecules. We particularly visualized APP dimerization employing a variety of biochemical experiments and investigated the origin of its generation by using a Bimolecular Fluorescence Complementation (BiFC) approach with split GFP-APP chimeras. Moreover, using N-terminal deletion constructs, we demonstrate that intermolecular disulfide linkage between cysteine residues, exclusively located in the extracellular E1 domain, represents another mechanism of how an APP sub-fraction can dimerize within the cell. Additionally, mutational studies revealed that cysteines at positions 98 and 105, embedded in the conserved loop region within the E1 domain, are critical for interchain disulfide bond formation. Using a pharmacological treatment approach, we show that once generated in the oxidative environment of the ER, APP dimers remain stably associated during transport, reaching the plasma membrane. In addition, we demonstrate that APP isoforms, encompassing the KPI domain, exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-directed cell aggregation of Drosophila Schneider (S2)-cells was isoform independent, mediating cell-cell contacts. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER, suggesting a similar mechanism for heterodimerization. Therefore, dynamic alterations of APP between monomeric, homodimeric, and possibly heterodimeric status could at least partially explain some of the variety in the physiological functions of APP.rn
Resumo:
Die vorliegende Dissertation beschäftigt sich mit dem Membrantransporter-vermittelten Export von asymmetrischem Dimethyl-L-Arginin (ADMA) aus der Endothelzelle. Da ADMA-Plasmakonzentrationen mit Erkrankungen wie koronaren Herzkrankheiten, Atherosklerose, Bluthochdruck und Endotheldysfunktion in Verbindung gebracht werden, ist ein effektiver ADMA-Export aus der Zelle heraus unabdingbar. Um den Mechanismus hierfür aufzuklären, wurden die immortalisierte Endothelzelllinie EA.hy926 und weitere primäre Endothelzellen (humane Umbilikalvenenendothelzellen und Endothelzellen der großen und kleinen Herzgefäße) auf die Expression basischer Aminosäuretransporter mittels einer qRT-PCR hin untersucht. Dabei zeigte sich, dass alle getesteten Endothelzellen die Aminosäuretransporter hCAT-1, y+LAT1 und y+LAT2 exprimierten. Basierend auf ADMA-Exportdaten, die mit entsprechenden Transporter-überexprimierenden Xenopus laevis-Oozyten gewonnen wurden, wurde festgestellt, dass alle drei Membrantransporter ADMA exportieren konnten. Der physiologisch wichtige Exportweg für intrazellulär anfallendes ADMA scheint dabei der via y+L zu sein, da es sich hierbei um einen aktiven Exportmechanismus handelt, der im Gegentransport von im humanen Plasma reichlich vorhandenen neutralen Aminosäuren und Natriumionen den nach innen gerichteten Natriumgradienten ausnutzt. Die Wichtigkeit des Membrantransportes für die Kontrolle intrazellulärer ADMA-Konzentrationen wurde in vitro durch Entzug von extrazellulären Austauschsubstraten und einer daraus resultierenden Blockade der Transportfunktion gezeigt. Hierbei wurde innerhalb von zwei Stunden ein 2,5-facher Anstieg der intrazellulären ADMA-Konzentration festgestellt, die bei Präsenz von Austauschsubstrat für die Transporter nicht auftrat. Die Relevanz der y+LATs für den ADMA-Export wurde durch Herunterregulation dieser Proteine mittels siRNA sichtbar: Unter diesen Bedingungen konnte ADMA auch in Anwesenheit von Austauschsubstrat für das System y+L weniger effektiv exportiert werden. Eine wichtige Aufgabe des humanen Endothels ist die Bildung bioaktiven Stickstoffmonoxids, das unter anderem eine Vasodilatation der Gefäße bewirkt. Für diese NO-Synthese wird L-Arginin als Substrat von der endothelialen NO-Synthase benötigt. ADMA stellt einen kompetitiven Inhibitor dar, dessen erhöhtes intrazelluläres Vorkommen möglicherweise hemmend auf die NO-Synthase wirken könnte. Es konnten hier allerdings keine Auswirkungen eines um das 4-fache gestiegenen, intrazellulären ADMA-Spiegels auf die Tätigkeit der endothelialen NO-Synthase festgestellt werden. Möglicherweise bedarf es eines noch weiter zu Gunsten des ADMAs verschobenen, intrazellulären L-Arginin:ADMA-Verhältnisses, um eine Hemmung der NO-Synthase festzustellen. Dies könnte bei einem pathologischen Transporterausfall eintreten, der intrazellulär permanent höhere ADMA-Konzentrationen zur Folge hätte. Des Weiteren hätte ein Anstieg der Arginasetätigkeit und damit einhergehend ein Substratdefizit für die NO-Synthase den gleichen Effekt. Der translationale Ansatz mit humanen peripheren mononukleären Blutzellen von Patienten aus der 2. Medizinischen Klinik zeigte die Tendenz einer Korrelation zwischen dem ADMA-Exportvermögen und der Endothelfunktion und brachte zudem die Erkenntnis eines individuell äußerst variablen ADMA-Exportvermögens zutage.
Resumo:
We identified syntaxin 5 (Stx5), a protein involved in intracellular vesicle trafficking, as a novel interaction partner of the very low density lipoprotein (VLDL)-receptor (VLDL-R), a member of the LDL-receptor family. In addition, we investigated the effect of Stx5 on VLDL-R maturation, trafficking and processing. Here, we demonstrated mutual association of both proteins using several in vitro approaches. Furthermore, we detected a special maturation phenotype of VLDL-R resulting from Stx5 overexpression. We found that Stx5 prevented Golgi-maturation of VLDL-R, but did not cause accumulation of the immature protein in ER to Golgi compartments, the main expression sites of Stx5. Rather more, abundantly present Stx5 was capable of translocating ER-/N-glycosylated VLDL-R to the plasma membrane, and thus was insensitive to BFA treatment and incubation at low temperature. Based on our findings, we postulate that Stx5 can directly bind to the C-terminal domain of VLDL-R, thereby influencing the receptor’s glycosylation, trafficking and processing characteristics. Resulting from that, we further suggest that Stx5, which is highly expressed in neurons along with VLDL-R, might play a role in modulating the receptor’s physiology by participating in a novel/undetermined alternative pathway bypassing the Golgi apparatus.
Resumo:
The betaine/GABA transporter BGT1 is one of the most important osmolyte transporters in the kidney. BGT1 is a member of the neurotransmitter sodium symporter (NSS) family, facilitates Na+/Cl--coupled betaine uptake to cope with hyperosmotic stress. Betaine transport in kidney cells is upregulated under hypertonic conditions by a yet unknown mechanism when increasing amounts of intracellular BGT1 are inserted into the plasma membrane. Re-establishing isotonicity results in ensuing depletion of BGT1 from the membrane. BGT1 phosphorylation on serines and threonines might be a regulation mechanism. In the present study, four potential PKC phosphorylation sites were mutated to alanines and the responses to PKC activators, phorbol 12-myristate acetate (PMA) and dioctanoyl-sn-glycerol (DOG) were determined. GABA-sensitive currents were diminished after 30 min preincubation with these PKC activators. Staurosporine blocked the response to DOG. Three mutants evoked normal GABA-sensitive currents but currents in oocytes expressing the mutant T40A were greatly diminished. [3H]GABA uptake was also determined in HEK-293 cells expressing EGFP-tagged BGT1 with the same mutations. Three mutants showed normal upregulation of GABA uptake after hypertonic stress, and downregulation by PMA was normal compared to EGFP-BGT1. In contrast, GABA uptake by the T40A mutant showed no response to hypertonicity or PMA. Confocal microscopy of the EGFP-BGT1 mutants expressed in MDCK cells, grown on glass or filters, revealed that T40A was present in the cytoplasm after 24 h hypertonic stress while the other mutants and EGFP-BGT1 were predominantely present in the plasma membrane. All four mutants co-migrated with EGFP-BGT1 on Western blots suggesting they are full-length proteins. In conclusion, T235, S428, and S564 are not involved in downregulation of BGT1 due to phosphorylation by PKC. However, T40 near the N-terminus may be part of a hot spot important for normal trafficking or insertion of BGT1 into the plasma membrane. Additionally, a link between substrate transport regulation, insertion of BGT1 into the plasma membrane and N-glycosylation in the extracellular loop 2 (EL2) could be revealed. The functional importance of two predicted N-glycosylation sites, which are conserved in EL2 within the NSS family were investigated for trafficking, transport and regulated plasma membrane insertion by immunogold-labelling, electron microscopy, mutagenesis, two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radioactive-labelled substrate into MDCK cells. Trafficking and plasma membrane insertion of BGT1 was clearly promoted by proper N-glycosylation in both, oocytes and MDCK cells. De-glycosylation with PNGase F or tunicamycin led to a decrease in substrate affinity and transport rate. Mutagenesis studies revealed that in BGT1 N183 is the major N-glycosylation site responsible for full protein activity. Replacement of N183 with aspartate resulted in a mutant, which was not able to bind N-glycans suggesting that N171 is a non-glycosylated site in BGT1. N183D exhibited close to WT transport properties in oocytes. Surprisingly, in MDCK cells plasma membrane insertion of the N183D mutant was no longer regulated by osmotic stress indicating unambiguously that association with N-glycans at this position is linked to osmotic stress-induced transport regulation in BGT1. The molecular transport mechanism of BGT1 remains largely unknown in the absence of a crystal structure. Therefore investigating the structure-function relationship of BGT1 by a combination of structural biology (2D and 3D crystallization) and membrane protein biochemistry (cell culture, substrate transport by radioactive labeled GABA uptake into cells and proteoliposomes) was the aim of this work. While the functional assays are well established, structure determination of eukaryotic membrane transporters is still a challenge. Therefore, a suitable heterologous expression system could be defined, starting with cloning and overexpression of an optimized gene. The achieved expression levels in P. pastoris were high enough to proceed with isolation of BGT1. Furthermore, purification protocols could be established and resulted in pure protein, which could even be reconstituted in an active form. The quality and homogeneity of the protein allowed already 2D and 3D crystallization, in which initial crystals could be obtained. Interestingly, the striking structural similarity of BGT1 to the bacterial betaine transporter BetP, which became a paradigm for osmoregulated betaine transport, provided information on substrate coordination in BGT1. The structure of a BetP mutant that showed activity for GABA was solved to 3.2Å in complex with GABA in an inward facing open state. This structure shed some light into the molecular transport mechanisms in BGT1 and might help in future to design conformationally locked BGT1 to enforce the on-going structure determination.
Resumo:
Ziel der Arbeit war es, die physiologische Funktion von 2-Adaptin zu charakterisieren. 2 Adaptin wurde 1998 erstmals von Takatsu et al. und Lewin et al. als mögliches Mitglied der Clathrin-Adapter-Proteinfamilie beschrieben. Seine genaue physiologische Funktion ist aber bis heute noch unklar. Bisherige Ergebnisse deuten darauf hin, das 2-Adaptin unabhängig von den AP-Komplexen wirkt. rnIn der HBV-Morphogenese ist eine spezielle Funktion von 2-Adaptin bekannt, da es dort nach seiner Ubiquitinierung durch Nedd4 als Adapter zwischen dem HBV L- und Core-Protein fungiert und Änderungen in der 2 Konzentration die HBV-Freisetzung blockieren.rn2-Adaptin besitzt neben den für die Clathrin-Adapter Proteine typischen Clathrin-bindenden Eigenschaften auch die Fähigkeit, Ubiquitin über sein UIM zu binden. Darüberhinaus wird 2-Adaptin durch seine Interaktion mit der Ubiquitin-Ligase Nedd4 selbst ubiquitiniert. Damit besitzt 2-Adaptin typische Eigenschaften eines Ubiquitin-Adapters. 2-Adaptin ist an MVBs lokalisiert und Abweichungen in der 2 Konzentration verändern die MVB-Morphologie. Zudem führt die Überexpression von 2-Adaptin zur Blockade der Freisetzung retroviraler VLPs und die 2 Depletion blockiert den lysosomalen Abbau von EGF, einem Substrat des endo-lysosomalen Proteintransports. Dies alles deutet auf eine mögliche Funktion von 2-Adaptin in diesem Transportsystem hin, welche in dieser Arbeit näher untersucht wurde.rnEs konnte gezeigt werden, dass die Depletion von 2-Adaptin den Abbau von endogenen (z.B. EGF, ubiquitinierte Proteine) und exogenen (z.B. das retrovirale MLV.gag-Polyprotein) Substraten des endo-lysosomalen Weges inhibiert, während sie bei 2 Überexpression verstärkt abgebaut werden. Alle bisher identifizierten „Substrate“ von 2 Adaptin, also Proteine, die durch überschüssiges 2-Adaptin abgebaut werden, besitzen eine Verbindung zum endo-lysosomalen System und / oder zur Ubiquitin-Maschinerie der Zelle. Weitere Hinweise auf eine Rolle von 2 Adaptin im MVB-Weg lieferte die Identifikation von Vps28 und Chmp2A als spezifische Interaktionspartner von 2-Adaptin. Über Vps28 erhält -Adaptin direkten Zugang zum ESCRT-I- und über Chmp2A zum ESCRT-III-Komplex. rnZudem konnte neben dem UIM eine PH-Domäne in 2-Adaptin als wichtige funktionelle Domäne identifiziert werden. Sie stellt das Modul für die Interaktion mit Rab7 dar, welche erstmals gezeigt werden konnte. Auch die Interaktion mit Rab7 deutet auf eine Rolle von 2 Adaptin im endo-lysosomalen Transportsystem hin, da Rab7 an späten Endosomen lokalisiert ist und u.a. die Fusion der MVBs mit den Lysosomen vermittelt. Da die Auswirkungen der Rab7-Überexpression und Depletion auf MLV.gag denen der 2 Überexpression bzw. Depletion entsprechen, liegt die Vermutung nahe, dass 2-Adaptin an einem ähnlich späten Schritt im endo-lysosomalen Transportsystem wirkt wie Rab7. Jedoch blockiert überschüssiges 2 Adaptin die ESCRT-abhängige VLP-Ausschleusung an der Plasmamembran und fungiert daher möglicherweise als negativer Regulator der ESCRT-Kaskade. Da die Überexpression von -Adaptin aber gleichzeitig zum vermehrten lysosomalen Abbau führt, ist eine Funktion von 2-Adaptin bei der MVB-Lysosomen-Fusion wenig wahrscheinlich. Einer solchen Funktion widerspricht auch, dass die intrazelluläre Konzentration von Rab7 und Vps28 durch überschüssiges 2-Adaptin reduziert werden. rnAls dritte funktionell wichtige Domäne in 2-Adaptin konnte ein LIR-Motiv identifiziert werden, über welches -Adaptin mit dem Autophagie-Markerprotein LC3 interagieren kann. Die Interaktion mit LC3, und damit die Verbindung zur Autophagie-Machinerie, liefert eine mögliche Erklärung für den vermehrten Abbau bei 2-Überexpression und den Abbau von Proteinen auf der MVB-Oberfläche. Dabei induziert 2-Adaptin nicht die Autophagie per se, sondern scheint als Autophagie-Adapter zu wirken, der seine Substrate, z.B. MVBs, selektiv dem Abbau durch Autophagie zuführt. rnrnEine mögliche Rolle von 2-Adaptin im zum Lysosom hin gerichteten zellulären Transport konnte bestätigt werden, wobei 2-Adaptin dabei verschiedene Funktionen übernimmt: rn als Ubiquitin-Adapter im endo-lysosomalen System, rn als negativer Regulator der ESCRT-Kaskadern und / oder als Autophagie-Adapter.rn
Resumo:
Das DNA-Reparaturprotein O6-Methylguanin-DNA-Methyltransferase [MGMT] ist der Hauptresistenzfaktor gegenüber der zytotoxischen Wirkung von SN1-alkylierenden Zytostatika in der Tumortherapie. Die Verwendung der MGMT-Hemmstoffe O6-Benzylguanin [O6BG] und O6-(4-Bromothenyl)guanin [O6BTG] führte zu einer Sensibilisierung des Normalgewebes, was eine Dosis-Reduktion der Zytostatika erforderlich machte und die erhoffte Therapieverbesserung verhinderte. Aus diesem Grund ist eine Strategie der selektiven Hemmung des MGMT-Proteins (Targeting-Strategie) erforderlich, um die systemische Toxizität in der Kombinationsbehandlung zu reduzieren. In dieser Arbeit wurde die Anwendbarkeit der Glukose-Konjugation als Targeting-Strategie untersucht, da Tumorzellen einen erhöhten Glukoseverbrauch aufweisen und demzufolge Glukosetransporter überexprimieren. Die Glukose-Konjugate O6BG-Glu und O6BTG-Glu inhibierten MGMT in Tumorzellen und sensibilisierten die Zellen gegenüber den alkylierenden Agenzien Temozolomid [TMZ] und Lomustin [CCNU]. Des Weiteren inaktivierten die Glukose-Konjugate die MGMT-Aktivität im Tumor eines Xenograft-Mausmodells und reduzierten das Tumorwachstum nach einer TMZ-Behandlung im gleichen Ausmass wie die Inhibitoren O6BG und O6BTG. Trotzdem war auch mit den Glukose-Konjugaten keine Steigerung der Zytostatika-Dosis im Mausmodell möglich. Die Untersuchungen der Aufnahme von O6BG-Glu und O6BTG-Glu wiederlegten eine Involvierung der Glukosetransporter. Der Einsatz von spezifischen Glukosetransporter-Inhibitoren und Kompetitions-Experimenten führte zu keiner Verminderung der MGMT-Hemmung oder Aufnahme vom radioaktiven H3-O6BTG-Glu in die Zelle. Dies legt nahe, dass die Glukose-Konjugate über einen unspezifischen Mechanismus (aktiv) in die Zellen gelangen. Der Grund für eine mögliche unselektive Aufnahme könnte im hydrophoben Alkyllinker, der für die Konjugation des Glukosemoleküls verwendet wurde, begründet sein. Dies führt zur Generierung von amphipathischen Konjugaten, die eine initiale Bindung an die Plasmamembran aufweisen und eine Aufnahme über den Flip-Flop-Mechanismus (transbilayer transport) wahrscheinlich machen. Die amphipathische Molekülstruktur der Glukose-Konjugate führte zu einer Partikelbildung in wässrigen Lösungen, die eine Reduktion der Menge an aktiven Monomeren von O6BG-Glu und O6BTG-Glu bewirken, die zur Hemmung von MGMT zur Verfügung stehen. Der zweite Teil der Arbeit befasste sich mit der Rolle von ABC-Transportern hinsichtlich einer Targeting-Strategie von MGMT-Hemmstoffen. Obwohl eine hohe Expression dieser ABC-Transporter in Tumoren zur Resistenzentwicklung gegenüber Zytostatika führt, wurde ihr Einfluss auf MGMT-Hemmstoffe oder einer MGMT-Targeting-Strategie niemals untersucht. In dieser Arbeit wurde zum ersten Mal ein aktiver Efflux von MGMT-Hemmstoffen durch ABC-Transporter nachgewiesen. Die Inhibition von ABC-Transportern bewirkte eine schnellere Inaktivierung von MGMT durch die Glukose-Konjugate. Des Weiteren zeigten Kompetitions-Experimente mit den MGMT-Hemmstoffen eine verminderte Efflux-Rate von Fluoreszenzfarbstoffen, die spezifisch von ABC-Transportern exportiert werden. ABC-Transporter reduzieren die wirksame Konzentration des Hemmstoffes in der Zelle und beeinträchtigen somit die Effektivität der MGMT-Inhibition. Eine simultane Hemmung der ABC-Transporter P-glycoprotein (P-gp), multi resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP) erhöhte die Effektivität der MGMT-Hemmstoffe (O6BG, O6BTG, O6BG-Glu, O6BTG-Glu) und verstärkte auf diese Weise die TMZ-induzierte Toxizität in Tumorzelllinien. Die Involvierung von ABC-Transportern in der intrazellulären Speicherung von MGMT-Hemmstoffen ist wahrscheinlich die Ursache für die beobachteten Unterschiede in der Sensibilisierung verschiedener Tumorzelllinien gegenüber Zytostatika durch das Glukose-Konjugat O6BG-Glu. Eine Strategie, den Einfluss von ABC-Transportern zu reduzieren und zukünftliche MGMT-Targeting-Strategien effizienter umzusetzen, ist die Verwendung von O6BTG als Ausgangssubstanz. Die höhere Inhibitionsfähigkeit der Bromthiophenmoleküle vermindert die erforderliche intrazelluläre Konzentration für eine vollständige MGMT-Hemmung und reduziert auf diese Weise den Einfluss von ABC-Transportern.
Resumo:
Subendothelial in den Arterienwänden abgelagertes LDL kann einer enzymatischen Modifikation unterliegen, die es in einen cytotoxischen Partikel überführt. In vitro Behandlung von LDL mit Proteasen (Trypsin) und Cholesterinesterase führt zu einem dem läsionalen LDL ähnlichen Produkt. Die Behandlung von humanen Endothelzellen mit enzymatisch verändertem LDL (E-LDL), das einen hohen Gehalt an freiem Cholesterin und freien Fettsäuren aufweist, führt zur Auslösung der Apoptose via ASK1 (apoptosis signal-regulating kinase 1) –abhängiger p38-Phosphorylierung. Durch eine Aktivierung der Effektor-Caspasen-3/-7 kommt es zur Fragmentierung der DNA und zur Spaltung des nukleären Enzyms Poly-(ADP-ribose)-Polymerase. Phosphatidylserin ist an der äußeren Zellmembran mittels Annexin-Bindung detektierbar. Natives oder oxidiertes LDL induziert bei gleicher Konzentration keinen programmierten Zelltod. In Depletions- und Rekonstitutionsexperimenten wurden freie Fettsäuren aus E-LDL als Auslöser der Apoptose identifiziert. In nativem LDL ist der Anteil an freien Fettsäuren gering, deshalb ist das Lipoprotein nicht cytotoxisch. E-LDL induziert weiterhin eine Erhöhung bzw. eine Hemmung der transkriptionellen Aktivität eines AP-1- bzw. NF-κB-Luciferase Reporterplasmids. Die Ausschaltung von ASK1 mittels RNA-Interferenz bzw. die Hemmung von p38 mit dem Inhibitor SB203580 rettet die Zellen vor dem programmierten Zelltod. E-LDL kann in Endothelzellen oxidativen Stress auslösen. Durch Vorbehandlung mit N-Acetyl-Cystein wird die Aktivierung sowohl von ASK1 als auch von p38 unterdrückt.
Resumo:
Resultate dieser Arbeit zeigen, dass endotheliale und neuronale NO-Synthasen (eNOS und nNOS) ihr Substrat Arginin nicht ausschließlich aus extrazellulären, sondern auch aus intrazellulären Quellen beziehen. Das Substrat aus den intrazellulären Quellen scheint nicht über Membrantransporter in den Extrazellulärraum gelangen zu können. Dies deutet darauf hin, dass eine enge Assoziation der Arginin-bereitstellenden Enzyme mit eNOS bzw. nNOS vorliegen könnte. Dadurch würde das durch diese Enzyme generierte Arginin direkt an die NOS weitergereicht und nicht über Transporter gegen andere basische Aminosäuren (AS) im Extrazellulärraum ausgetauscht werden. Eine intrazelluläre Substrat-Quelle besteht aus dem so genannten „Recycling“, der Umwandlung des bei der NO-Synthese entstehenden Citrullins in Arginin. Eine Kopplung von Arginin-bereitstellenden „Recycling“-Enzymen mit NOS wird in Endothelzellen und teilweise auch in TGW-nu-I Neuroblastomzellen beobachtet, nicht jedoch in A673 Neuroepitheliomzellen. Die Kopplung scheint daher vom Zelltyp abhängig zu sein. Das zur Arginin-Regeneration benötigte Citrullin kann allen untersuchten Zellen durch den Austausch mit spezifischen neutralen AS, die ausschließlich zum Substratprofil des System N Transporters SN1 passen, entzogen werden. Die Anwesenheit von SN1-Substraten im Extrazellulärraum führt daher indirekt zu einer Depletion der Recycling-Quelle. SN1 mRNA ist in allen untersuchten Zellen nachweisbar. Aus Protein-Abbau stammendes Arginin stellt den zweiten Teil der intrazellulären Arginin-Quelle dar. Dieser ist in allen untersuchten eNOS- oder nNOS exprimierenden Zellen vorhanden. Das Arginin stammt dabei sowohl aus lysosomalem als auch proteasomalen Proteinabbau, wie der Einsatz spezifischer Inhibitoren zeigt. Extrazelluläres Histidin (aber keine andere Aminosäure) kann diese Arginin-Quelle depletieren. Wir vermuten deshalb, dass Histidin über den Peptid-Histidin-Transporter PHT1, der in allen untersuchten Zellen stark exprimiert ist, gegen die durch lysosomalen und proteasomalen Proteinabbau entstehenden Arginin-haltigen Di- und Tripeptide ausgetauscht wird. Der wichtigste endogene NOS-Inhibitor, asymmetrisches Dimethylarginin (ADMA), ein Marker für endotheliale Dysfunktion und Risikofaktor für kardiovaskuläre Erkrankungen, stammt ebenfalls aus Proteinabbau. Die Verfügbarkeit dieser intrazellulären Arginin-Quelle wird deshalb stark vom Methylierungsgrad des Arginins in den abgebauten Proteinen abhängen. Eine lokale ADMA-Anreicherung könnte eine Erklärung für das Arginin-Paradox sein, der unter pathophysiologischen Bedingungen beobachteten Verminderung der endothelialen NO-Synthese bei anscheinend ausreichenden intrazellulären Argininkonzentrationen. Da auch in neurodegenerativen Erkrankungen, wie Morbus Alzheimer, ADMA eine Rolle zu spielen scheint, könnte das Arginin-Paradox auch für die nNOS-vermittelte NO-Synthese von Bedeutung sein. Die Resultate demonstrieren, dass die Substratversorgung der beiden NOS-Isoformen nicht ausschließlich von kationischen Aminosäuretransportern abhängig ist, sondern auch von Transportern für neutrale Aminosäuren und Peptide, und außerdem von Arginin-bereitstellenden Enzymen. Der jeweilige Beitrag der verschiedenen Arginin-Quellen zur Substratversorgung der NOS ist daher abhängig vom Anteil der jeweiligen Aminosäuren und Peptide in der extrazellulären Flüssigkeit.
Resumo:
NG2 is a transmembrane proteoglycan with two N-terminal LNS domains and a C-terminal PDZ-binding motif. It is expressed in the developing and adult CNS by oligodendroglial precursor cells and subpopulations of perisynaptic glia and elsewhere by many immature cell types. In order to elucidate the functions of the protein and the heterogenous cell population which expresses it, we undertook to identify and characterise interaction partners of the molecule. The presence of the C-terminal PDZ recognition site in NG2 suggested PDZ-domain proteins as intracellular binding partners. In this work, interaction between the PDZ protein Syntenin and NG2 has been characterised. Syntenin is known to be involved in plasma membrane dynamics, metastasis and adhesion. Syntenin may thus link NG2 to the cytoskeleton, mediating migration of developing oligodendrocytes to axonal tracts prior to myelination, as well as process movement of NG2+ perisynaptic glia. NG2 is involved in cell spreading and polyclonal antibodies against NG2 inhibit the migration of immature glia and cell lines expressing the molecule. In this work we have characterised the segments of the extracellular portion of NG2 that are involved in migration. We found that the extracellular region immediately preceding the transmembrane segment is most important for cell motility. As part of this thesis, biochemical approaches to identify a trans-binding ligand interacting with the extracellular part of NG2 was also explored.
Resumo:
Desmosomen sind hoch organisierte adhäsive interzelluläre Verbindungen, die benachbarte Zellen durch Verankerung mit den Intermediärfilamenten des Zytoskeletts miteinander verknüpfen und so Zellen und Geweben Stabilität verleihen. Die Adhäsionsmoleküle der Desmosomen sind die desmosomalen Cadherine. Diese transmembranen Glykoproteine gehen im Interzellulärraum Verbindungen mit den desmosomalen Cadherinen der Nachbarzelle ein und sind im zytoplasmatischen Bereich Anheftungspunkte für weitere an der Desmosomenbildung beteiligte Proteine. Ziel dieser Arbeit war die Untersuchung der Rolle von Desmoglein 2 (Dsg 2), einem in allen Epithelien exprimierten desmosomalen Cadherin. Da der konstitutive knock out von Dsg 2 embryonal letal ist, wurde im Rahmen dieser Doktorarbeit eine transgene Maus generiert, in der die Reduktion von Dsg 2 temporär regulierbar war (konditionaler knock down). Dazu wurde der Mechanismus der RNA Interferenz genutzt, wodurch Sequenz-spezifische, post-transkriptionelle Regulation von Genen möglich ist. Unter Verwendung eines über Cre/lox-induzierbaren Vektors wurden transgene Mäuse generiert, welche nach Induktion Dsg 2 shRNA exprimieren, die in der Zelle in siRNA umgewandelt wird und zum Abbau der Dsg 2 mRNA führt. Durch Verpaarung der generierten Dsg 2 knock down Maus mit der über Tamoxifen induzierbaren Cre Deleter knock in Mauslinie Rosa26CreERT2 konnte deutliche Reduktion der Dsg 2 Proteinmenge in Leber, Darm und Herz erreicht werden. In Immunfärbungen der Leber wurde zudem eine reduzierte Desmosomenbildung durch Expression der Dsg 2 shRNA detektiert. Die für diese Versuche generierte und getestete Rosa26CreERT2 Mauslinie ermöglichte jedoch nicht in allen Zellen eines Gewebes die komplette Aktivierung der Cre Rekombinase und damit die Expression der shRNA. Dadurch entstanden mosaikartige Wildtyp/knock down-Gewebe, in denen noch ausreichend Desmosomen gebildet wurden, um die Gewebestabilität und -struktur zu erhalten. Für eine funktionale Untersuchung von Dsg 2 in Zusammenhang mit der chronisch entzündlichen Darmerkrankung Colitis ulcerosa wurden die Dsg 2 knock down Mäuse mit Darm-spezifischen, induzierbaren Cre Deleter Mäusen (VillinCreERT2) verpaart. Nach Aktivierung der Cre Rekombinase mittels Tamoxifen wurde in bitransgenen Tieren über Gabe von Azoxymethan (AOM) und Dextransodiumsulfat (DSS) Colitis ulcerosa induziert. Diese entzündliche Erkrankung des Darms ist mit der Induktion von Darmtumoren assoziiert. Bereits nach einmaliger Induktion mit AOM/DSS wurde in der ersten endoskopischen Untersuchung eine starke Entzündung des Darmgewebes und die Ausbildung von flächig wachsenden Tumoren in den Dsg 2 knock down Tieren hervorgerufen. Es ist anzunehmen, dass durch knock down von Dsg 2, und die damit verbundene verminderte Desmosomenbildung und Zelladhäsion, Infiltration von Bakterien durch die epitheliale Barriere des Darms möglich war, und so die Entzündungsreaktion in der Darmmukosa verstärkte. In Zusammenhang mit Verlust der epithelialen Festigkeit durch verringerte Zellkontakte kam es zur Hyperproliferation der Darmmukosa, die sich in Ausbildung von flächigen Tumoren äußerte. In weiteren Experimenten müssen nun die Tumore und das entzündete Gewebe der Colitis-induzierten Mäuse mittels Immunfluoreszenz untersucht werden, um Veränderungen in der Desmosomenformation in situ detektieren zu können. Des Weiteren sind Verpaarungen der Dsg 2 knock down Maus mit anderen Cre Rekombinase exprimierenden Mauslinien möglich, um den Einfluss von Dsg 2 auch in anderen Geweben, beispielsweise im Herzen, zu untersuchen. Die hier vorgelegte Arbeit zeigt also erstmalig den ursächlichen Zusammenhang zwischen Dsg 2 und dem Auftreten von Colitis-assoziierten Tumoren in einem konditionalen RNAi-vermittelten knock down Tiermodell. Die Etablierung dieser Maus ist somit das erste konditionale Mausmodell, welches die bei vielen Krebspatienten gefundenen flachzellig wachsenden Tumore in vivo rekapituliert. Vorausschauend kann man sagen, dass mit Hilfe des im Rahmen dieser Doktorarbeit entwickelten Tiermodells wichtige Erkenntnisses über die Pathologie von Darmtumoren erbracht werden können, die unser Verständnis der Colitis-induzierten Tumorentstehung verbessern.
Resumo:
Staphylococcus aureus alpha-hemolysin was the first bacterial toxin recognized to form pores in the plasma membrane of eukaryotic cells. It is secreted as a water-soluble monomer that upon contact with target membranes forms an amphiphatic heptameric beta-barrel which perforates the bilayer. As a consequence, red cells undergo colloidosmotic lyses, while some nucleated cells may succumb to necrosis or programmed cell death. However, most cells are capable of repairing a limited number of membrane lesions, and then respond with productive transcriptional activation of NF-kB. In the present study, by using microarray and semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), data from a previously performed serial analysis of gene expression (SAGE) were extended and verified, revealing that immediate early genes (IEGs) such as c-fos, c-jun and egr-1 are strongly induced at 2-8 h after transient toxin treatment. Activating protein 1 (AP-1: c-Fos, c-Jun) binding activity was increased accordingly. As IEGs are activated by growth factors, these findings led to the discovery that -toxin promotes cell cycle progression of perforated cells in an EGFR-dependent fashion. Although the amount of c-fos mRNA rose rapidly after toxin treatment, c-Fos protein expression was observed only after a lag of about 3 h. Since translation consumes much ATP, which transiently drops after transient membrane perforation, the suspicion arised that membrane-perforation caused global, but temporary downregulation of translation. In fact, eIF2α became heavily phosphorylated minutes after cells had been confronted with the toxin, resulting in shutdown of protein synthesis before cellular ATP levels reached the nadir. GCN2 emerged as a candidate eIF2α kinase, since its expression rapidly increased in toxin-treated cells. Two hours after toxin treatment, GADD34 transcripts, encoding a protein that targets the catalytic subunit of protein phosphatase 1 (PP1) to the endoplasmic reticulum, were overexpressed. This was followed by dephosphorylation of eIF2α and resumption of protein synthesis. Addition of tautomycetin, a specific inhibitor of PP1, led to marked hyperphosphorylation of eIF2α and significantly reduced the drop of ATP-levels in toxin-treated cells. A novel link between two major stress-induced signalling pathways emerged when it was found that both translational arrest and restart were under the control of stress-activated protein kinase (SAPK) p38. The data provide an explanation for the indispensible role of p38 for defence against the archetypal threat of membrane perforation by agents that produce small transmembrane-pores.