8 resultados para Critical Sobolev Exponent
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this study, a given quasilinear problem is solved using variational methods. In particular, the existence of nontrivial solutions for GP is examined using minimax methods. The main theorem on the existence of a nontrivial solution for GP is detailed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A new universal empirical function that depends on a single critical exponent (acceleration exponent) is proposed to describe the scaling behavior in a dissipative kicked rotator. The scaling formalism is used to describe two regimes of dissipation: (i) strong dissipation and (ii) weak dissipation. For case (i) the model exhibits a route to chaos known as period doubling and the Feigenbaum constant along the bifurcations is obtained. When weak dissipation is considered the average action as well as its standard deviation are described using scaling arguments with critical exponents. The universal empirical function describes remarkably well a phase transition from limited to unlimited growth of the average action. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The structural evolution in silica sols prepared from tetraethoxysilane (TEOS) sonohydrolysis was studied 'in situ' using small-angle x-ray scattering (SAXS). The structure of the gelling system can be reasonably well described by a correlation function given by gamma(r) similar to (1/R(2))(1/r) exp(- r/xi), where xi is the structure correlation length and R is a chain persistence length, as an analogy to the Ornstein-Zernike theory in describing critical phenomenon. This approach is also expected for the scattering from some linear and branched molecules as polydisperse coils of linear chains and random f-functional branched polycondensates. The characteristic length. grows following an approximate power law with time t as xi similar to t(1) (with the exponent quite close to 1) while R remains undetermined but with a constant value, except at the beginning of the process in which the growth of. is slower and R increases by only about 15% with respect to the value of the initial sol. The structural evolution with time is compatible with an aggregation process by a phase separation by coarsening. The mechanism of growth seems to be faster than those typically observed for pure diffusion controlled cluster-cluster aggregation. This suggests that physical forces (hydrothermal forces) could be actuating together with diffusion in the gelling process of this system. The data apparently do not support a spinodal decomposition mechanism, at least when starting from the initial stable acid sol studied here.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Existence and multiplicity of solutions for a prescribed mean-curvature problem with critical growth
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)