Existence and multiplicity of solutions for a prescribed mean-curvature problem with critical growth


Autoria(s): Figueiredo, Giovany Malcher; Pimenta, Marcos Tadeu de Oliveira
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

22/10/2015

22/10/2015

07/04/2015

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 2014/16136-1

In this work we study an existence and multiplicity of solutions for the prescribed mean-curvature problem with critical growth,-div (del u/root 1+vertical bar del u vertical bar(2)) = lambda vertical bar u vertical bar(q-2) u + vertical bar u vertical bar(2*-2)u in Omegau = 0 on partial derivative Omega,where Omega is a bounded smooth domain of R-N, N >= 3 and 1 < q < 2. To employ variational arguments, we consider an auxiliary problem which is proved to have infinitely many solutions by genus theory. A clever estimate in the gradient of the solutions of the modified problem is necessary to recover solutions of the original problem.

Formato

1-18

Identificador

http://arxiv.org/abs/1304.4462

Electronic Journal Of Differential Equations. San Marcos: Texas State University, p. 1-18, 2015.

1072-6691

http://hdl.handle.net/11449/129762

WOS:000352639600001

Idioma(s)

eng

Publicador

Texas State University

Relação

Electronic Journal Of Differential Equations

Direitos

closedAccess

Palavras-Chave #Prescribed mean-curvature problem #Critical exponent #Variational methods
Tipo

info:eu-repo/semantics/article