Critical behavior at edge singularities in one-dimensional spin models
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/09/2008
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) In ferromagnetic spin models above the critical temperature (T>Tcr) the partition function zeros accumulate at complex values of the magnetic field (H(E)) with a universal behavior for the density of zeros rho(H) similar to vertical bar H-HE vertical bar(sigma). The critical exponent sigma is believed to be universal at each space dimension and it is related to the magnetic scaling exponent y(h) via sigma = (d-y(h))/y(h). In two dimensions we have y(h) = 12/5 (sigma = -1/6) while y(h) = 2 (sigma = -1/2) in d = 1. For the one-dimensional Blume-Capel and Blume-Emery-Griffiths models we show here, for different temperatures, that a value y(h) = 3 (sigma = -2/3) can emerge if we have a triple degeneracy of the transfer matrix eigenvalues. |
Formato |
6 |
Identificador |
http://dx.doi.org/10.1103/PhysRevE.78.031138 Physical Review E. College Pk: Amer Physical Soc, v. 78, n. 3, p. 6, 2008. 1539-3755 http://hdl.handle.net/11449/9235 10.1103/PhysRevE.78.031138 WOS:000259682700045 WOS000259682700045.pdf |
Idioma(s) |
eng |
Publicador |
Amer Physical Soc |
Relação |
Physical Review E |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |