118 resultados para Algebraic Polynomials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inner products of the type < f, g >(S) = < f, g >psi(0) + < f', g'>psi(1), where one of the measures psi(0) or psi(1) is the measure associated with the Gegenbauer polynomials, are usually referred to as Gegenbauer-Sobolev inner products. This paper deals with some asymptotic relations for the orthogonal polynomials with respect to a class of Gegenbauer-Sobolev inner products. The inner products are such that the associated pairs of symmetric measures (psi(0), psi(1)) are not within the concept of symmetrically coherent pairs of measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Szego polynomials with respect to the weight function w(theta) = e(eta theta)[sin(theta/2)](2 lambda), where eta, lambda is an element of R and lambda > -1/2 are considered. Many of the basic relations associated with these polynomials are given explicitly. Two sequences of para-orthogonal polynomials with explicit relations are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2, 3, 4, 6, 8 and 12, which are rotated versions of the lattices Λn, for n = 2,3,4,6,8 and K12. These algebraic lattices are constructed through twisted canonical homomorphism via ideals of a ring of algebraic integers. Mathematical subject classification: 18B35, 94A15, 20H10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Wigner function associated with the Rogers-Szego polynomials is proposed and its properties are discussed. It is shown that from such a Wigner function it is possible to obtain well-behaved probability distribution functions for both angle and action variables, defined on the compact support -pi less than or equal to theta < pi, and for m greater than or equal to 0, respectively. The width of the angle probability density is governed by the free parameter q characterizing the polynomials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.