Some asymptotics for Sobolev orthogonal polynomials involving Gegenbauer weights
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
15/12/2010
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) We consider the Sobolev inner product< f.g > = integral(1)(-1) f(x)g(x)(1 - x(2))(alpha-1/2) dx + integral f'(x)g'(x)d psi(x), alpha > -1/2,where d(psi) is a measure involving a Gegenbauer weight and with mass points outside the interval (-1, 1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product. We obtain the asymptotics of the largest zeros of these polynomials via a Mehler-Heine type formula. These results are illustrated with some numerical experiments. (C) 2010 Elsevier B.V. All rights reserved. |
Formato |
904-915 |
Identificador |
http://dx.doi.org/10.1016/j.cam.2010.05.028 Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 235, n. 4, p. 904-915, 2010. 0377-0427 http://hdl.handle.net/11449/21819 10.1016/j.cam.2010.05.028 WOS:000283902100004 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Computational and Applied Mathematics |
Direitos |
closedAccess |
Palavras-Chave | #Sobolev orthogonal polynomials #Asymptotic #Mehler-Heine type formulas |
Tipo |
info:eu-repo/semantics/article |