Zeros of Gegenbauer-Sobolev Orthogonal Polynomials: Beyond Coherent Pairs


Autoria(s): de Andrade, E. X. L.; Bracciali, Cleonice Fátima; Ranga, Alagacone Sri
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2009

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Iserles et al. (J. Approx. Theory 65: 151-175, 1991) introduced the concepts of coherent pairs and symmetrically coherent pairs of measures with the aim of obtaining Sobolev inner products with their respective orthogonal polynomials satisfying a particular type of recurrence relation. Groenevelt (J. Approx. Theory 114: 115-140, 2002) considered the special Gegenbauer-Sobolev inner products, covering all possible types of coherent pairs, and proves certain interlacing properties of the zeros of the associated orthogonal polynomials. In this paper we extend the results of Groenevelt, when the pair of measures in the Gegenbauer-Sobolev inner product no longer form a coherent pair.

Formato

65-82

Identificador

http://dx.doi.org/10.1007/s10440-008-9265-8

Acta Applicandae Mathematicae. Dordrecht: Springer, v. 105, n. 1, p. 65-82, 2009.

0167-8019

http://hdl.handle.net/11449/21794

10.1007/s10440-008-9265-8

WOS:000261400800003

Idioma(s)

eng

Publicador

Springer

Relação

Acta Applicandae Mathematicae

Direitos

closedAccess

Palavras-Chave #Gegenbauer polynomials #Zeros of Gegenbauer-Sobolev orthogonal polynomials #Symmetrically coherent pairs
Tipo

info:eu-repo/semantics/article