The Wigner function associated with the Rogers-Szego polynomials


Autoria(s): Galetti, D.; Mizrahi, S. S.; Ruzzi, M.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

17/12/2004

Resumo

A Wigner function associated with the Rogers-Szego polynomials is proposed and its properties are discussed. It is shown that from such a Wigner function it is possible to obtain well-behaved probability distribution functions for both angle and action variables, defined on the compact support -pi less than or equal to theta < pi, and for m greater than or equal to 0, respectively. The width of the angle probability density is governed by the free parameter q characterizing the polynomials.

Formato

L643-L648

Identificador

http://dx.doi.org/10.1088/0305-4470/37/50/L01

Journal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 37, n. 50, p. L643-L648, 2004.

0305-4470

http://hdl.handle.net/11449/23149

10.1088/0305-4470/37/50/L01

WOS:000226014400002

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Journal of Physics A: Mathematical and General

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article