The Wigner function associated with the Rogers-Szego polynomials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
17/12/2004
|
Resumo |
A Wigner function associated with the Rogers-Szego polynomials is proposed and its properties are discussed. It is shown that from such a Wigner function it is possible to obtain well-behaved probability distribution functions for both angle and action variables, defined on the compact support -pi less than or equal to theta < pi, and for m greater than or equal to 0, respectively. The width of the angle probability density is governed by the free parameter q characterizing the polynomials. |
Formato |
L643-L648 |
Identificador |
http://dx.doi.org/10.1088/0305-4470/37/50/L01 Journal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 37, n. 50, p. L643-L648, 2004. 0305-4470 http://hdl.handle.net/11449/23149 10.1088/0305-4470/37/50/L01 WOS:000226014400002 |
Idioma(s) |
eng |
Publicador |
Iop Publishing Ltd |
Relação |
Journal of Physics A: Mathematical and General |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |