11 resultados para Lógica matemática
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The present study has as objective to explaining about the origins of the mathematical logic. This has its beginning attributed to the autodidactic English mathematician George Boole (1815-1864), especially because his books The Mathematical Analysis of Logic (1847) and An Investigation of the Laws of Thought (1854) are recognized as the inaugural works of the referred branch. However, surprisingly, in the same time another mathematician called Augutus of Morgan (1806-1871) it also published a book, entitled Formal Logic (1847), in defense of the mathematic logic. Even so, times later on this same century, another work named Elements of Logic (1875) it appeared evidencing the Aristotelian logic with Richard Whately (1787-1863), considered the better Aristotelian logical of that time. This way, our research, permeated by the history of the mathematics, it intends to study the logic produced by these submerged personages in the golden age of the mathematics (19th century) to we compare the valid systems in referred period and we clarify the origins of the mathematical logic. For that we looked for to delineate the panorama historical wrapper of this study. We described, shortly, biographical considerations about these three representatives of the logic of the 19th century formed an alliance with the exhibition of their point of view as for the logic to the light of the works mentioned above. In this sense, we aspirated to present considerations about what effective Aristotelian´s logic existed in the period of Boole and De Morgan comparing it with the new emerging logic (the mathematical logic). Besides of this, before the textual analysis of the works mentioned above, we still looked for to confront the systems of Boole and De Morgan for we arrive to the reason because the Boole´s system was considered better and more efficient. Separate of this preponderance we longed to study the flaws verified in the logical system of Boole front to their contemporaries' production, verifying, for example, if they repeated or not. We concluded that the origins of the mathematical logic is in the works of logic of George Boole, because, in them, has the presentation of a new logic, matematizada for the laws of the thought similar to the one of the arithmetic, while De Morgan, in your work, expand the Aristotelian logic, but it was still arrested to her
Resumo:
Logic courses represent a pedagogical challenge and the recorded number of cases of failures and of discontinuity in them is often high. Amont other difficulties, students face a cognitive overload to understand logical concepts in a relevant way. On that track, computational tools for learning are resources that help both in alleviating the cognitive overload scenarios and in allowing for the practical experimenting with theoretical concepts. The present study proposes an interactive tutorial, namely the TryLogic, aimed at teaching to solve logical conjectures either by proofs or refutations. The tool was developed from the architecture of the tool TryOcaml, through support of the communication of the web interface ProofWeb in accessing the proof assistant Coq. The goals of TryLogic are: (1) presenting a set of lessons for applying heuristic strategies in solving problems set in Propositional Logic; (2) stepwise organizing the exposition of concepts related to Natural Deduction and to Propositional Semantics in sequential steps; (3) providing interactive tasks to the students. The present study also aims at: presenting our implementation of a formal system for refutation; describing the integration of our infrastructure with the Virtual Learning Environment Moodle through the IMS Learning Tools Interoperability specification; presenting the Conjecture Generator that works for the tasks involving proving and refuting; and, finally to evaluate the learning experience of Logic students through the application of the conjecture solving task associated to the use of the TryLogic
Resumo:
Notable mathematics teacher, Lewis Carroll, pseudonym of Charles Lutwidge Dodgson (1832-1898), made the mixture of mathematics with literature a ludic environment for learning that discipline. Author of Alice s Adventures In Wonderland and its sequel Alice Through The Looking Glass, he eventually created a real and complex universe which uses what we call the logic of the nonsense as an element to motivate the development of mathematical thinking of the reader, taking it as well, learn by establishing a link between the concrete (mathematics) and the imaginary (their universe). In order to investigate and discuss the educational potential of their works and state some elements that can contribute to a decentralized math education from the traditional method of following the models and decorate formulas, we visited his works based on the studies of archeology of knowledge (FOUCAULT, 2007), the rational thought and symbolic thinking (VERGANI, 2003) and about the importance of stories and narratives to the development of human cognition (FARIAS, 2006). Through a descriptive, analytical study, we used the literary construction and presented part of our study in form of a mathematical novel, to give the mathematical school a particular charm, without depriving it of its basics properties as discipline and content. Our study showed how the works of Carroll have a strong didactic element that can deploy in various activities of study and teaching for mathematics classes
Resumo:
The aim of the present study is to reevaluate the logical thought of the English mathematician George Boole (1815 - 1864). Thus, our research centers on the mathematical analysis of logic in the context of the history of mathematics. In order to do so, we present various biographical considerations about Boole in the light of events that happened in the 19th century and their consequences for mathematical production. We briefly describe Boole's innovations in the areas of differential equations and invariant theory and undertake an analysis of Boole's logic, especially as formulated in the book The Mathematical Analysis of Logic, comparing it not only with the traditional Aristotelian logic, but also with modern symbolic logic. We conclude that Boole, as he intended, expanded logic both in terms of its content and also in terms of its methods and formal elaboration. We further conclude that his purpose was the mathematical modeling of deductive reasoning, which led him to present an innovative formalism for logic and, because the different ways it can be interpreted, a new conception of mathematics
Resumo:
This work present a interval approach to deal with images with that contain uncertainties, as well, as treating these uncertainties through morphologic operations. Had been presented two intervals models. For the first, is introduced an algebraic space with three values, that was constructed based in the tri-valorada logic of Lukasiewiecz. With this algebraic structure, the theory of the interval binary images, that extends the classic binary model with the inclusion of the uncertainty information, was introduced. The same one can be applied to represent certain binary images with uncertainty in pixels, that it was originated, for example, during the process of the acquisition of the image. The lattice structure of these images, allow the definition of the morphologic operators, where the uncertainties are treated locally. The second model, extend the classic model to the images in gray levels, where the functions that represent these images are mapping in a finite set of interval values. The algebraic structure belong the complete lattices class, what also it allow the definition of the elementary operators of the mathematical morphology, dilation and erosion for this images. Thus, it is established a interval theory applied to the mathematical morphology to deal with problems of uncertainties in images
Resumo:
De nombreuses études sur l`utilisation pédagogique de l`histoire des mathématiques viennent a identifier les arguments qui sous-tiennent ces actions éducatives comme une façon d`aborder les mathématiques scolaires afin de mener les élèves à un apprentissage réflexif et significatif des mathématiques. Cherchant a vérifier, de manière pratique, comment ces relations entre histoire des mathématiques et l`enseignement des mathématiques peuvent se matérialiser sous la forme d`activités didactiques, nous avons effectué un sondage sur les oeuvres du mathématicien Joseph Louis Lagrange (1736-1813) et identifié le potentiel d`exploration éducatif, de l`oeuvre Leçons élémentaires sur les mathématiques données a l`École Normale en 1795, de cet mathématicien. L`objectif principal de notre étude était de faire des recherches sur le potentiel d`une oeuvre antique dédié à l`enseignement des mathématiques et de la considérer comme support conceptuel et didactique pour la création d`un modèle d`activités didactiques pour l`enseignement des mathématiques, dans la formation des enseignants de mathématiques et aussi en ce qui concerne l`apprentissage des mathématiques des élèves de l`école primaire. Nous avons fait une lecture, la traduction et l`ajout de notes et commentaires sur le travail et une recherche bibliographique sur la relation entre l`histoire des mathématiques et l`enseignement des mathématiques, de façon a comprendre les aspects conceptuels et didactiques pour l`élaboration d`um module activités didactiques pour l`enseignement des mathématiques basée sur certains chapitres du livre de Lagrange. À cette fin, l`oeuvre a été utilisé comme source primaire et a été étudié sous un fondement théorique appuyer sur les travaux des Institut de recherche sur l`enseignement des mathématiques IREM. Dans le module élaboré, les activités apportent les contenus dans une suite integrée à une logique de classe, à partir de la lecture directe des découpages du texte original, disposés entre les questions et les situations-problémes , historiquement mis en contexte avec la période et associés à des contenus spécifiques. Comme il s`agit d`une recherche basée sur l`exploitation de livres anciens, nous croyons que des modules d`activités basées sur des source primaires peuvent être utilisées comme un matériel pédagogique pour la formation des enseignants de mathématiques ainsi que pour les dernières années de l`école élémentaire, reformulées ou accrues d`autres questions telles l`intérêt de chaque enseignant qui l`utilise
Resumo:
The intervalar arithmetic well-known as arithmetic of Moore, doesn't possess the same properties of the real numbers, and for this reason, it is confronted with a problem of operative nature, when we want to solve intervalar equations as extension of real equations by the usual equality and of the intervalar arithmetic, for this not to possess the inverse addictive, as well as, the property of the distributivity of the multiplication for the sum doesn t be valid for any triplet of intervals. The lack of those properties disables the use of equacional logic, so much for the resolution of an intervalar equation using the same, as for a representation of a real equation, and still, for the algebraic verification of properties of a computational system, whose data are real numbers represented by intervals. However, with the notion of order of information and of approach on intervals, introduced by Acióly[6] in 1991, the idea of an intervalar equation appears to represent a real equation satisfactorily, since the terms of the intervalar equation carry the information about the solution of the real equation. In 1999, Santiago proposed the notion of simple equality and, later on, local equality for intervals [8] and [33]. Based on that idea, this dissertation extends Santiago's local groups for local algebras, following the idea of Σ-algebras according to (Hennessy[31], 1988) and (Santiago[7], 1995). One of the contributions of this dissertation, is the theorem 5.1.3.2 that it guarantees that, when deducing a local Σ-equation E t t in the proposed system SDedLoc(E), the interpretations of t and t' will be locally the same in any local Σ-algebra that satisfies the group of fixed equations local E, whenever t and t have meaning in A. This assures to a kind of safety between the local equacional logic and the local algebras
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications
Resumo:
This dissertation aims to suggest the teacher of high school mathematics a way of teaching logic to students. For this uses up a teaching sequence that explores the mathematical concepts that are involved in the operation of a calculator one of the greatest symbols of mathematics.
Resumo:
This dissertation aims to suggest the teacher of high school mathematics a way of teaching logic to students. For this uses up a teaching sequence that explores the mathematical concepts that are involved in the operation of a calculator one of the greatest symbols of mathematics.