792 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA EM REDE NACIONAL
Resumo:
In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.
Resumo:
In this work, the paper of Campos and Dorea [3] was detailed. In that article a Kernel Estimator was applied to a sequence of random variables with general state space, which were independent and identicaly distributed. In chapter 2, the estimator´s properties such as asymptotic unbiasedness, consistency in quadratic mean, strong consistency and asymptotic normality were verified. In chapter 3, using R software, numerical experiments were developed in order to give a visual idea of the estimate process
Resumo:
In Survival Analysis, long duration models allow for the estimation of the healing fraction, which represents a portion of the population immune to the event of interest. Here we address classical and Bayesian estimation based on mixture models and promotion time models, using different distributions (exponential, Weibull and Pareto) to model failure time. The database used to illustrate the implementations is described in Kersey et al. (1987) and it consists of a group of leukemia patients who underwent a certain type of transplant. The specific implementations used were numeric optimization by BFGS as implemented in R (base::optim), Laplace approximation (own implementation) and Gibbs sampling as implemented in Winbugs. We describe the main features of the models used, the estimation methods and the computational aspects. We also discuss how different prior information can affect the Bayesian estimates
Resumo:
This paper we study a random strategy called MOSES, which was introduced in 1996 by Fran¸cois. Asymptotic results of this strategy; behavior of the stationary distributions of the chain associated to strategy, were derived by Fran¸cois, in 1998, of the theory of Freidlin and Wentzell [8]. Detailings of these results are in this work. Moreover, we noted that an alternative approach the convergence of this strategy is possible without making use of theory of Freidlin and Wentzell, yielding the visit almost certain of the strategy to uniform populations which contain the minimum. Some simulations in Matlab are presented in this work
Resumo:
We present residual analysis techniques to assess the fit of correlated survival data by Accelerated Failure Time Models (AFTM) with random effects. We propose an imputation procedure for censored observations and consider three types of residuals to evaluate different model characteristics. We illustrate the proposal with the analysis of AFTM with random effects to a real data set involving times between failures of oil well equipment
Resumo:
Universidade Federal do Rio Grande do Norte
Resumo:
Em experimentos com vários fatores em que alguns são mais difíceis de mudar que outros, pode ser inconveniente executar as provas do experimento em uma forma completamente aleatória, levando o pesquisador a criar naturalmente uma restrição na ordem de execução para poupar tempo ou reduzir os custos. Este tipo de restrição pode resultar em uma generalização do planejamento fatorial, conhecida como experimentos em parcelas subdivididas. Na prática, é comum executar um experimento em parcelas subdivididas e analisá-lo como se fosse completamente aleatorizado. O objetivo principal do trabalho é avaliar o impacto de analisar um experimento com restrição na aleatorização como completamente aleatorizado
Resumo:
In this work, we present a text on the Sets Numerical using the human social needs as a tool for construction new numbers. This material is intended to present a text that reconciles the correct teaching of mathmatics and clarity needed for a good learning
Resumo:
The belief of using experimental activities in the teaching of Physics as a strategy to produce a more efficient teaching-learning process is great among teachers and the school community. However, there are many difficulties for their implementation and when it happens they do not contribute for an improvement in class efficiency due to the method used. In this work, we developed a proposal for using these activities in Physics classes in high school, from a critical-reflexive approach in which the constant dialogue between the participants in the teaching-learning process is fundamental. The work was developed in two ways. The first, where the author/writer created an educational material and applied it in classroom and a second one, where he presented the idea to other teachers and undergraduate students from the Physics course at UFRN and IFRN (former CEFET-RN) through an extended workshop entitled "The role of experimental activities in the Physics teaching". This workshop had the duration of 60 hours and was implemented in 4 steps: i) sensitization and formation, ii) material development, iii) material implementation and iv) evaluation by teachers and students from the classes where the material was applied. The goal of this workshop was to present the approach, evaluate how the participants received the idea and how they would apply it in real situations. The results of the application in classroom allowed us to reach some conclusions. This approach was well received by the students as well as by the workshop participants. Despite some difficulties in relation to the handling of the implementation results by the workshop participants, they indicated changes in these professionals teaching practice and the introduction of experimental activities has been an important subsidy to assist them in Physics class in high school
Resumo:
Difusive processes are extremely common in Nature. Many complex systems, such as microbial colonies, colloidal aggregates, difusion of fluids, and migration of populations, involve a large number of similar units that form fractal structures. A new model of difusive agregation was proposed recently by Filoche and Sapoval [68]. Based on their work, we develop a model called Difusion with Aggregation and Spontaneous Reorganization . This model consists of a set of particles with excluded volume interactions, which perform random walks on a square lattice. Initially, the lattice is occupied with a density p = N/L2 of particles occupying distinct, randomly chosen positions. One of the particles is selected at random as the active particle. This particle executes a random walk until it visits a site occupied by another particle, j. When this happens, the active particle is rejected back to its previous position (neighboring particle j), and a new active particle is selected at random from the set of N particles. Following an initial transient, the system attains a stationary regime. In this work we study the stationary regime, focusing on scaling properties of the particle distribution, as characterized by the pair correlation function ø(r). The latter is calculated by averaging over a long sequence of configurations generated in the stationary regime, using systems of size 50, 75, 100, 150, . . . , 700. The pair correlation function exhibits distinct behaviors in three diferent density ranges, which we term subcritical, critical, and supercritical. We show that in the subcritical regime, the particle distribution is characterized by a fractal dimension. We also analyze the decay of temporal correlations
Resumo:
In this work we study a new risk model for a firm which is sensitive to its credit quality, proposed by Yang(2003): Are obtained recursive equations for finite time ruin probability and distribution of ruin time and Volterra type integral equation systems for ultimate ruin probability, severity of ruin and distribution of surplus before and after ruin
Resumo:
The on-line processes control for attributes consists of inspecting a single item at every m produced ones. If the examined item is conforming, the production continues; otherwise, the process stops for adjustment. However, in many practical situations, the interest consist of monitoring the number of non-conformities among the examined items. In this case, if the number of non-conformities is higher than an upper control limit, the process needs to be stopped and some adjustment is required. The contribution of this paper is to propose a control system for the number of nonconforming of the inspected item. Employing properties of an ergodic Markov chain, an expression for the expected cost per item of the control system was obtained and it will be minimized by two parameters: the sampling interval and the upper limit control of the non-conformities of the examined item. Numerical examples illustrate the proposed procedure
Resumo:
Este trabalho tem como objetivo o estudo do comportamento assintótico da estatística de Pearson (1900), que é o aparato teórico do conhecido teste qui-quadrado ou teste x2 como também é usualmente denotado. Inicialmente estudamos o comportamento da distribuição da estatística qui-quadrado de Pearson (1900) numa amostra {X1, X2,...,Xn} quando n → ∞ e pi = pi0 , 8n. Em seguida detalhamos os argumentos usados em Billingley (1960), os quais demonstram a convergência em distribuição de uma estatística, semelhante a de Pearson, baseada em uma amostra de uma cadeia de Markov, estacionária, ergódica e com espaço de estados finitos S
Resumo:
In this work we study the Hidden Markov Models with finite as well as general state space. In the finite case, the forward and backward algorithms are considered and the probability of a given observed sequence is computed. Next, we use the EM algorithm to estimate the model parameters. In the general case, the kernel estimators are used and to built a sequence of estimators that converge in L1-norm to the density function of the observable process
Resumo:
In this work we studied the consistency for a class of kernel estimates of f f (.) in the Markov chains with general state space E C Rd case. This study is divided into two parts: In the first one f (.) is a stationary density of the chain, and in the second one f (x) v (dx) is the limit distribution of a geometrically ergodic chain