16 resultados para Poly(Lactic-co-Glycolic Acid)

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper industry is constantly looking for new ideas for improving paper products while competition and raw material prices are increasing. Many paper products are pigment coated. Coating layer is the top layer of paper, thus by modifying coating pigment also the paper itself can be altered and value added to the final product. In this thesis, synthesis of new plastic and hybrid pigments and their performance in paper and paperboard coating is reported. Two types of plastic pigments were studied: core-shell latexes and solid beads of maleimide copolymers. Core-shell latexes with partially crosslinked hydrophilic polymer core of poly(n-butyl acrylate-co-methacrylic acid) and a hard hydrophobic polystyrene shell were prepared to improve the optical properties of coated paper. In addition, the effect of different crosslinkers was analyzed and the best overall performance was achieved by the use of ethylene glycol dimethacrylate (EGDMA). Furthermore, the possibility to modify core-shell latex was investigated by introducing a new polymerizable optical brightening agent, 1-[(4-vinylphenoxy)methyl]-4-(2-henylethylenyl)benzene which gave promising results. The prepared core-shell latex pigments performed smoothly also in pilot coating and printing trials. The results demonstrated that by optimizing polymer composition, the optical and surface properties of coated paper can be significantly enhanced. The optimal reaction conditions were established for thermal imidization of poly(styrene-co-maleimide) (SMI) and poly(octadecene-co-maleimide) (OMI) from respective maleic anhydride copolymer precursors and ammonia in a solvent free process. The obtained aqueous dispersions of nanoparticle copolymers exhibited glass transition temperatures (Tg) between 140-170ºC and particle sizes from 50-230 nm. Furthermore, the maleimide copolymers were evaluated in paperboard coating as additional pigments. The maleimide copolymer nanoparticles were partly imbedded into the porous coating structure and therefore the full potential of optical property enhancement for paperboard was not achieved by this method. The possibility to modify maleimide copolymers was also studied. Modifications were carried out via N-substitution by replacing part of the ammonia in the imidization reaction with amines, such as triacetonediamine (TAD), aspartic acid (ASP) and fluorinated amines (2,2,2- trifluoroethylamine, TFEA and 2,2,3,3,4,4,4-heptafluorobuthylamine, HFBA). The obtained functional nanoparticles varied in size between 50-217 nm and their Tg from 150-180ºC. During the coating process the produced plastic pigments exhibited good runnability. No significant improvements were achieved in light stability with TAD modified copolymers whereas nanoparticles modified with aspartic acid and those containing fluorinated groups showed the desired changes in surface properties of the coated paperboard. Finally, reports on preliminary studies with organic-inorganic hybrids are presented. The hybrids prepared by an in situ polymerization reaction consisted of 30 wt% poly(styrene- co-maleimide) (SMI) and high levels of 70 wt% inorganic components of kaolin and/or alumina trihydrate. Scanning Electron Microscopy (SEM) images and characterization by Fourier Transform Infrared Spcetroscopy (FTIR) and X-Ray Diffraction (XRD) revealed that the hybrids had conventional composite structure and inorganic components were covered with precipitated SMI nanoparticles attached to the surface via hydrogen bonding. In paper coating, the hybrids had a beneficial effect on increasing gloss levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä työssä tutkittiin pienten molekyylien nanosuodatusta kolmella kalvolla. Lappeenrannan teknillisen korkeakoulun laboratoriomittakaavan nanosuodatuslaitteistolla suodatettiin glukoosin, maitohapon ja oktaanihapon vesiliuoksia 0,45 m/s virtausnopeudella. Lisäksi NF 45, NF 270 ja NTR 7450 –kalvoja modifioitiin UV-säteilytyksellä modifiointiaineen kanssa tai ilman. Modifiointiaineina olivat maito- ja oktaanihappo. Kalvon modifioinnilla pyrittiin parantamaan permeabiliteettia ilman retentiohäviöitä. Kirjallisuusosassa käsiteltiin nanosuodatuksen erottumisperiaatteita ja konsentraatiopolarisaation merkitystä liuenneiden aineiden erottumisessa. Lisäksi käsiteltiin kalvon modifioinnin merkitystä suodatuksen parantamiseen ja pienten orgaanisten molekyylien nanosuodatusta. Aluksi suodatettiin glukoosi- ja oktaanihappoliuoksia NF 270 –kalvolla. Glukoosin retentio oli 80% pitoisuudesta riippumatta, mutta oktaanihapon retentio, 70-100%, riippui pitoisuudesta. 100 ppm oktaanihapon pitoisuudessa retentio oli 100% ja suuremmilla pitoisuuksilla alhaisempi. Kun oktaanihappoa suodatettiin modifioimattomilla kalvoilla pH:n funktiona, niin retentiot olivat pH-riippuvaisia. Alhaisilla pH-arvoilla oktaanihapon retentiot olivat lähes nolla ja nousivat jyrkästi pH:ssa 6 siten, että korkeilla pH-arvoilla retentiot olivat yli 80%. Glukoosin suodatuksissa NF 270 –kalvolla modifiointi aina hieman paransi vuota, mutta retentiot huononivat. Oktaanihapon suodatuksissa vuo parani hieman, kun kalvoja (NF 270 ja NTR 7450) oli modifioitu 20 minuuttia UV-säteilytyksellä 100 ppm maitohappoliuoksessa. NTR 7450 –kalvon vuo moninkertaistui modifioimattoman kalvon vuohon verrattuna, kun kalvoa oli UV-säteilytetty 20 minuuttia 2000 ppm maitohappoliuoksessa. Oktaanihapposuodatuksissa retentiot modifioiduilla kalvoilla olivat suurimmat pH-alueella 7-10. Modifioitujen kalvojen permeabiliteetit nousivat jyrkästi pH:ssa 12 kaikilla malliaineilla, mikä viittaa siihen, että modifiointiaine irtosi pH:ssa 12. Toisaalta korkeilla pH-arvoilla kalvo muuttuu avoimemmaksi, joten modifiointiaineen irtoamista ei voitu näiden mittausten perusteella varmentaa. Kalvon modifiointi oli onnistunut, sillä malliainesuodatuksissa havaittiin vuo- ja retentiomuutoksia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are small amounts of valuable metals, such as indium, gallium and germanium, in zinc process solutions. Their solvent extraction was studied in this work in sulphate solutions containing zinc and other metals present in industrial solutions. It was discovered, that a commercial bis(2-ethylhexyl)phosphate (D2EHPA) extractant can be used to extract indium and gallium. Indium was extracted separately at a higher acid concentration than gallium. Zinc was co-extracted faster than gallium and almost as much as gallium at the same pH. However, the scrubbing of zinc was possible using a dilute sulphuric acid and a short contact time while gallium losses were small. Both indium and gallium were stripped with sulphuric acid. Germanium was extracted with 5,8-diethyl-7-hydroxydodecane-6-oxime with the commercial name of LIX 63. Unlike other metals in the solution the extraction of germanium increased with different extractants as the acidity increased. Germanium extraction isotherm was measured for a 125 g/L sulfuric acid solution. The loaded organic phase was washed with pure water. It removed the co-extracted acid and part of the germanium and extracted impurities such as iron and copper. Germanium was stripped using a NaOH solution. A process model utilizing own experimentally determined extraction, scrubbing and stripping isotherms was made with HSC Sim software developed by Outotec Oyj. The model based on McCabe–Thiele diagrams was used in sizing the necessary amount of stages and phase ratios in a recovery process. It was concluded, that indium, gallium and germanium can be recovered in the process from a feed where their concentrations are low (<300 ppm). In an example case the feed contained also more than 20 g/L zinc and 2–8 g/L iron, aluminium and copper. The recoveries of indium, gallium and germanium were more than 90 % when 1–3 stages were used in each extraction, scrubbing and stripping section. Since the number of stages is small mixer-settlers would be well suited for this purpose.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Terveyttä ja ruoan turvallisuutta edistävät maitohappobakteerien biotekniset sovellukset

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Terveysvaikutteisten elintarvikkeiden tuottamista edesauttavat maitohappobakteerien molekyyligeneettiset tutkimukset

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Maitohappobakteerien hyödyntäminen hapankaalin fermentoinnissa

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcified tissues, comprising bone and cartilage, are metabolically active tissues that bind and release calcium, bicarbonate and other substances according to systemic needs. Understanding the regulation of cellular metabolism in bone and cartilage is an important issue, since a link between the metabolism and diseases of these tissues is clear. An essential element in the function of bone-resorbing osteoclasts, namely regulation of bicarbonate transport, has not yet been thoroughly studied. Another example of an important but at the same time fairly unexplored subject of interest in this field is cartilage degeneration, an important determinant for development of osteoarthritis. The link between this and oxidative metabolism has rarely been studied. In this study, we have investigated the significance of bicarbonate transport in osteoclasts. We found that osteoclasts possess several potential proteins for bicarbonate transport, including carbonic anhydrase IV and XIV, and an electroneutral bicarbonate co-transporter NBCn1. We have also shown that inhibiting the function of these proteins has a significant impact on bone resorption and osteoclast morphology. Furthermore, we have explored oxidative metabolism in chondrocytes and found that carbonic anhydrase III (CA III), a protein linked to the prevention of protein oxidation in muscle cells, is also present in mouse chondrocytes, where its expression correlates with the presence of reactive oxygen species. Thus, our study provides novel information on the regulation of cellular metabolism in calcified tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall purpose of this thesis was to increase the knowledge on the biogeochemistry of rural acid sulphate (AS) soil environments and urban forest ecosystems near small towns in Western Finland. In addition, the potential causal relationship between the distribution of AS soils and geographical occurence of multiple sclerosis (MS) disease was assessed based on a review of existing literature and data. Acid sulphate soils, which occupy an area of approximately 17–24 million hectare worldwide, are regarded as the nastiest soils in the world. Independent of the geographical locality of these soils, they pose a great threat to their surrounding environment if disturbed. The abundant metal-rich acid drainage from Finnish AS soils, which is a result of sulphide oxidation due to artificial farmland drainage, has significant but spatially and temporally variable ecotoxicological impacts on biodiversity and community structure of fish, benthic invertebrates and macrophytes. This has resulted in mass fish kills and even eradication of sensitive fish species in affected waters. Moreover, previous investigations demonstrated significantly enriched concentrations of Co, Ni, Mn and Al, metals which are abundantly mobilised in AS soils, in agricultural crops (timothy grass and oats) and approximately 50 times higher concentrations of Al in cow milk originating from AS soils in Western Finland. Nevertheless, the results presented here demonstrate, in general, relatively moderate metal concentrations in oats and cabbage grown on AS soils in Western Finland, although some of the studied fields showed anomalous values of metals (e.g. Co and Ni) in both the soil and target plants (especially oats), similar to that of the previous investigations. The results indicated that the concentrations of Co, Ni, Mn and Zn in oats and Co and Zn in cabbage were governed by soil geochemistry as these metals were correlated with corresponding concentrations extracted from the soil by NH4Ac-EDTA and NH4Ac, respectively. The concentrations of Cu and Fe in oats and cabbage were uncorrelated to that of the easily soluble concentrations in the soils, suggesting that biological processes (e.g. plant-root processes) overshadow geochemical variation. The concentrations of K and Mg in cabbage, which showed a low spread and were strongly correlated to the NH4Ac extractable contents in the soil, were governed by both the bioavailable fractions in the topsoil and plant-uptake mechanisms. The plant´s ability to regulate its uptake of Ca and P (e.g. through root exudates) seemed to be more important than the influence of soil geochemistry. The distribution of P, K, Ca, Mg, Mn and S within humus, moss and needles in and around small towns was to a high degree controlled by biological cycling, which was indicated by the low correlation coefficients for P, K, Ca, Mg and S between humus and moss, and the low spread of these nutrients in moss and needles. The concentration variations of elements in till are mainly due to natural processes (e.g. intrusions, weathering, mineralogical variations in the bedrock). There was a strong spatial pattern for B in humus, moss and needles, which was suggested to be associated with anthropogenic emissions from nearby town centres. Geogenic dust affected the spatial distribution of Fe and Cr in moss, while natural processes governed the Fe anomaly found in the needles. The spatial accumulation patterns of Zn, Cd, Cu, Ni and Pb in humus and moss were strong and diverse, and related to current industry, the former steel industry, coal combustion, and natural geochemical processes. An intriguing Cu anomaly was found in moss. Since it was located close to a main railway line and because the railway line´s electric cables are made of Cu, it was suggested that the reason for the Cu anomaly is corrosion of these cables. In Western Finland, where AS soils are particularly abundant and enrich the metal concentrations of stream waters, cow milk and to some extent crops, an environmental risk assessment would be motivated to elucidate if the metal dispersion affect human health. Within this context, a topic of concern is the distribution of multiple sclerosis as high MS prevalence rates are found in the main area of AS soils. Regionally, the AS soil type in the Seinäjoki area has been demonstrated to be very severe in terms of metal leaching, this area also shows one of the highest MS rates reported worldwide. On a local scale, these severe AS soil types coincide well with the corresponding MS clustering along the Kyrönjoki River in Seinäjoki. There are reasons to suspect that these spatial correlations are causal, as multiple sclerosis has been suggested to result from a combination of genetic and environmental factors.