36 resultados para infinitesimal Alexander invariant

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar polynomial vector fields which admit invariant algebraic curves, Darboux integrating factors or Darboux first integrals are of special interest. In the present paper we solve the inverse problem for invariant algebraic curves with a given multiplicity and for integrating factors, under generic assumptions regarding the (multiple) invariant algebraic curves involved. In particular we prove, in this generic scenario, that the existence of a Darboux integrating factor implies Darboux integrability. Furthermore we construct examples where the genericity assumption does not hold and indicate that the situation is different for these.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an invariant of a three dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. An important feature of our work is that we are not using any nontrivial representation of the manifold fundamental group or knot group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an algebraic curve in the complex affine plane, we describe how to determine all planar polynomial vector fields which leave this curve invariant. If all (finite) singular points of the curve are nondegenerate, we give an explicit expression for these vector fields. In the general setting we provide an algorithmic approach, and as an alternative we discuss sigma processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we consider solutions starting close to some linearly stable invariant tori in an analytic Hamiltonian system and we prove results of stability for a super-exponentially long interval of time, under generic conditions. The proof combines classical Birkhoff normal forms and a new method to obtain generic Nekhoroshev estimates developed by the author and L. Niederman in another paper. We will mainly focus on the neighbourhood of elliptic fixed points, the other cases being completely similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove a formula for the multiplicities of the index of an equivariant transversally elliptic operator on a G-manifold. The formula is a sum of integrals over blowups of the strata of the group action and also involves eta invariants of associated elliptic operators. Among the applications, we obtain an index formula for basic Dirac operators on Riemannian foliations, a problem that was open for many years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove a formula for the multiplicities of the index of an equivariant transversally elliptic operator on a G-manifold. The formula is a sum of integrals over blowups of the strata of the group action and also involves eta invariants of associated elliptic operators. Among the applications, we obtain an index formula for basic Dirac operators on Riemannian foliations, a problem that was open for many years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let A be a simple, separable C*-algebra of stable rank one. We prove that the Cuntz semigroup of C (T, A) is determined by its Murray-von Neumann semigroup of projections and a certain semigroup of lower semicontinuous functions (with values in the Cuntz semigroup of A). This result has two consequences. First, specializing to the case that A is simple, finite, separable and Z-stable, this yields a description of the Cuntz semigroup of C (T, A) in terms of the Elliott invariant of A. Second, suitably interpreted, it shows that the Elliott functor and the functor defined by the Cuntz semigroup of the tensor product with the algebra of continuous functions on the circle are naturally equivalent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquest treball, que còpia en part el títol del llibre de Symons, intenta configurar-se també sobre un doble plànol expositiu. El priemr pla el primer objectiu-, es el més obvi: oferir un panorama del contingut de les principals obres d'un autor, Alexander Zinoviev, i tractar de contextualitzar-les (efectuant per allò incursions al pensament d'altres autors - a mode de breus razzies predatòries). Però el treball aspira a incloure una segona trama: l'intent d'observar una trajectòria intel·lectual determinada -en aquest cas, la de Zinoviev- de d'una certa distància i esbrinar si pot extreure's alguna lliçó no ja de les teories que l'autor va consignar per escrit, sinó de l'actitud existencial i intel·lectual amb la que un individu es va enfrontar als cataclismes produïts pels successius derrumbaments i encumbraments de les grans ideologies de la seva època.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we give a new construction of resonant normal forms with a small remainder for near-integrable Hamiltonians at a quasi-periodic frequency. The construction is based on the special case of a periodic frequency, a Diophantine result concerning the approximation of a vector by independent periodic vectors and a technique of composition of periodic averaging. It enables us to deal with non-analytic Hamiltonians, and in this first part we will focus on Gevrey Hamiltonians and derive normal forms with an exponentially small remainder. This extends a result which was known for analytic Hamiltonians, and only in the periodic case for Gevrey Hamiltonians. As applications, we obtain an exponentially large upper bound on the stability time for the evolution of the action variables and an exponentially small upper bound on the splitting of invariant manifolds for hyperbolic tori, generalizing corresponding results for analytic Hamiltonians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a sequel to ``Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasi-periodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori.