Recovering the Elliott invariant from the Cuntz semigroup


Autoria(s): Antoine Riolobos, Ramon; Dadarlat, Màrius; Perera Domènech, Francesc; Santiago, Luís
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

2011

Resumo

Let A be a simple, separable C*-algebra of stable rank one. We prove that the Cuntz semigroup of C (T, A) is determined by its Murray-von Neumann semigroup of projections and a certain semigroup of lower semicontinuous functions (with values in the Cuntz semigroup of A). This result has two consequences. First, specializing to the case that A is simple, finite, separable and Z-stable, this yields a description of the Cuntz semigroup of C (T, A) in terms of the Elliott invariant of A. Second, suitably interpreted, it shows that the Elliott functor and the functor defined by the Cuntz semigroup of the tensor product with the algebra of continuous functions on the circle are naturally equivalent.

Formato

16 p.

Identificador

http://hdl.handle.net/2072/182298

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1043

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Àlgebres d'operadors #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint