Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians


Autoria(s): Bounemoura, Abed
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/12/2012

Resumo

In this paper, we give a new construction of resonant normal forms with a small remainder for near-integrable Hamiltonians at a quasi-periodic frequency. The construction is based on the special case of a periodic frequency, a Diophantine result concerning the approximation of a vector by independent periodic vectors and a technique of composition of periodic averaging. It enables us to deal with non-analytic Hamiltonians, and in this first part we will focus on Gevrey Hamiltonians and derive normal forms with an exponentially small remainder. This extends a result which was known for analytic Hamiltonians, and only in the periodic case for Gevrey Hamiltonians. As applications, we obtain an exponentially large upper bound on the stability time for the evolution of the action variables and an exponentially small upper bound on the splitting of invariant manifolds for hyperbolic tori, generalizing corresponding results for analytic Hamiltonians.

Formato

31 p.

Identificador

http://hdl.handle.net/2072/206093

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1132

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Formes (Matemàtica) #Varietats (Matemàtica) #Hamilton, Sistemes de #Estabilitat #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint