Normal forms, stability and splitting of invariant manifolds II. Finitely differentiable Hamiltonians


Autoria(s): Bounemoura, Abed
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/12/2012

Resumo

This paper is a sequel to ``Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasi-periodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori.

Formato

21 p.

Identificador

http://hdl.handle.net/2072/206094

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1133

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Varietats (Matemàtica) #Formes (Matemàtica) #Estabilitat #Hamilton, Sistemes de #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint