Normal forms, stability and splitting of invariant manifolds II. Finitely differentiable Hamiltonians
Contribuinte(s) |
Centre de Recerca Matemàtica |
---|---|
Data(s) |
01/12/2012
|
Resumo |
This paper is a sequel to ``Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasi-periodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori. |
Formato |
21 p. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Centre de Recerca Matemàtica |
Relação |
Prepublicacions del Centre de Recerca Matemàtica;1133 |
Direitos |
info:eu-repo/semantics/openAccess L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
Fonte |
RECERCAT (Dipòsit de la Recerca de Catalunya) |
Palavras-Chave | #Varietats (Matemàtica) #Formes (Matemàtica) #Estabilitat #Hamilton, Sistemes de #517 - Anàlisi |
Tipo |
info:eu-repo/semantics/preprint |