288 resultados para Didactic laboratory of physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arrays of vertically aligned ZnO:Cl/ZnO core-shell nanowires were used to demonstrate that the control of the coaxial doping profile in homojunction nanostructures can improve their surface charge carrier transfer while conserving potentially excellent transport properties. It is experimentally shown that the presence of a ZnO shell enhances the photoelectrochemical properties of ZnO:Cl nanowires up to a factor 5. Likewise, the ZnO shell promotes the visible photoluminescence band in highly conducting ZnO:Cl nanowires. These lines of evidence are associated with the increase of the nanowires" surface depletion layer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a light emitting transistor based on silicon nanocrystals provided with 200 Mbits/ s built-in modulation. Suppression of electroluminescence from silicon nanocrystals embedded into the gate oxide of a field effect transistor is achieved by fast Auger quenching. In this process, a modulating drain signal causes heating of carriers in the channel and facilitates the charge injection into the nanocrystals. This excess of charge enables fast nonradiative processes that are used to obtain 100% modulation depths at modulating voltages of 1 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By an analysis of the exchange of carriers through a semiconductor junction, a general relationship for the nonequilibrium population of the interface states in Schottky barrier diodes has been derived. Based on this relationship, an analytical expression for the ideality factor valid in the whole range of applied bias has been given. This quantity exhibits two different behaviours depending on the value of the applied bias with respect to a critical voltage. This voltage, which depends on the properties of the interfacial layer, constitutes a new parameter to complete the characterization of these junctions. A simple interpretation of the different behaviours of the ideality factor has been given in terms of the nonequilibrium charging properties of interface states, which in turn explains why apparently different approaches have given rise to similar results. Finally, the relevance of our results has been considered on the determination of the density of interface states from nonideal current-voltage characteristics and in the evaluation of the effects of the interfacial layer thickness in metal-insulator-semiconductor tunnelling diodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present the Raman scattering of self-assembled InSb dots grown on (001) oriented InP substrates. The samples were grown by pulsed molecular beam epitaxy mode. Two types of samples have been investigated. In one type the InSb dots were capped with 200 monolayers of InP; in the other type no capping was deposited after the InSb dot formation. We observe two peaks in the Raman spectra of the uncapped dot, while only one peak is observed in the Raman spectra of the capped dots. In the case of the uncapped dots the peaks are attributed to LO-like and TO-like vibration of completely relaxed InSb dots, in agreement with high resolution transmission electron microscopy photographs. The Raman spectra of the capped dot suggest a different strain state in the dot due to the capping layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of InxAl12xAs samples (0.51,x,0.55) coherently grown on InP was studied in order to measure the band-gap energy of the lattice matched composition. As the substrate is opaque to the relevant photon energies, a method is developed to calculate the optical absorption coefficient from the photoluminescence excitation spectra. The effect of strain on the band-gap energy has been taken into account. For x50.532, at 14 K we have obtained Eg05154966 meV. © 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAlAs/InGaAs/InP based high electron mobility transistor devices have been structurally and electrically characterized, using transmission electron microscopy and Raman spectroscopy and measuring Hall mobilities. The InGaAs lattice matched channels, with an In molar fraction of 53%, grown at temperatures lower than 530¿°C exhibit alloy decomposition driving an anisotropic InGaAs surface roughness oriented along [1math0]. Conversely, lattice mismatched channels with an In molar fraction of 75% do not present this lateral decomposition but a strain induced roughness, with higher strength as the channel growth temperature increases beyond 490¿°C. In both cases the presence of the roughness implies low and anisotropic Hall mobilities of the two dimensional electron gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline silicon layers have been obtained by thermal annealing of films sputtered in various hydrogen partial pressures. The as-deposited and crystallized films were investigated by infrared, Raman, x-ray diffraction, electron microscopy, and optical absorption techniques. The obtained data show evidence of a close correlation between the microstructure and properties of the processed material, and the hydrogen content in the as-grown deposit. The minimum stress deduced from Raman was found to correspond to the widest band gap and to a maximum hydrogen content in the basic unannealed sample. Such a structure relaxation seems to originate from the so-called "chemical annealing" thought to be due to Si-H2 species, as identified by infrared spectroscopy. The variation of the band gap has been interpreted in terms of the changes in the band tails associated with the disorder which would be induced by stress. Finally, the layers originally deposited with the highest hydrogen pressure show a lowest stress-which does not correlate with the hydrogen content and the optical band gap¿and some texturing. These features are likely related to the presence in these layers of a significant crystalline fraction already before annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the influence of Nb doping on the TiO2 anatase-to-rutile phase transition, using combined transmission electron microscopy, Raman spectroscopy, x-ray diffraction and selected area electron diffraction analysis. This approach enabled anatase-to-rutile phase transition hindering to be clearly observed for low Nb-doped TiO2 samples. Moreover, there was clear grain growth inhibition in the samples containing Nb. The use of high resolution transmission electron microscopy with our samples provides an innovative perspective compared with previous research on this issue. Our analysis shows that niobium is segregated from the anatase structure before and during the phase transformation, leading to the formation of NbO nanoclusters on the surface of the TiO2 rutile nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between the structural (average size and density) and optoelectronic properties [band gap and photoluminescence (PL)] of Si nanocrystals embedded in SiO2 is among the essential factors in understanding their emission mechanism. This correlation has been difficult to establish in the past due to the lack of reliable methods for measuring the size distribution of nanocrystals from electron microscopy, mainly because of the insufficient contrast between Si and SiO2. With this aim, we have recently developed a successful method for imaging Si nanocrystals in SiO2 matrices. This is done by using high-resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Then, by varying the time of annealing in a large time scale we have been able to track the nucleation, pure growth, and ripening stages of the nanocrystal population. The nucleation and pure growth stages are almost completed after a few minutes of annealing time at 1100°C in N2 and afterward the ensemble undergoes an asymptotic ripening process. In contrast, the PL intensity steadily increases and reaches saturation after 3-4 h of annealing at 1100°C. Forming gas postannealing considerably enhances the PL intensity but only for samples annealed previously in less time than that needed for PL saturation. The effects of forming gas are reversible and do not modify the spectral shape of the PL emission. The PL intensity shows at all times an inverse correlation with the amount of Pb paramagnetic centers at the Si-SiO2 nanocrystal-matrix interfaces, which have been measured by electron spin resonance. Consequently, the Pb centers or other centers associated with them are interfacial nonradiative channels for recombination and the emission yield largely depends on the interface passivation. We have correlated as well the average size of the nanocrystals with their optical band gap and PL emission energy. The band gap and emission energy shift to the blue as the nanocrystal size shrinks, in agreement with models based on quantum confinement. As a main result, we have found that the Stokes shift is independent of the average size of nanocrystals and has a constant value of 0.26±0.03 eV, which is almost twice the energy of the Si¿O vibration. This finding suggests that among the possible channels for radiative recombination, the dominant one for Si nanocrystals embedded in SiO2 is a fundamental transition spatially located at the Si¿SiO2 interface with the assistance of a local Si-O vibration.