19 resultados para DIVISION RINGS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.
Resumo:
Knowledge on juvenile tree growth is crucial to understand how trees reach the canopy in tropical forests. However, long-term data on juvenile tree growth are usually unavailable. Annual tree rings provide growth information for the entire life of trees and their analysis has become more popular in tropical forest regions over the past decades. Nonetheless, tree ring studies mainly deal with adult rings as the annual character of juvenile rings has been questioned. We evaluated whether juvenile tree rings can be used for three Bolivian rainforest species. First, we characterized the rings of juvenile and adult trees anatomically. We then evaluated the annual nature of tree rings by a combination of three indirect methods: evaluation of synchronous growth patterns in the tree- ring series, (14)C bomb peak dating and correlations with rainfall. Our results indicate that rings of juvenile and adult trees are defined by similar ring-boundary elements. We built juvenile tree-ring chronologies and verified the ring age of several samples using (14)C bomb peak dating. We found that ring width was correlated with rainfall in all species, but in different ways. In all, the chronology, rainfall correlations and (14)C dating suggest that rings in our study species are formed annually.
Resumo:
Lianas are one of the most important components of tropical forest, and yet one of the most poorly known organisms. Therefore, our paper addresses questions on the environmental and developmental aspects that influence the growth of lianas of Bignoniaceae, tribe Bignonieae. In order to better understand their growth, we studied the stem anatomy, seasonality of formation and differentiation of secondary tissues, and the influence of the cambial variant in xylem development on a selected species: Tynanthus cognatus. Afterwards, we compared the results found in T. cognatus with 31 other species of Bignonieae to identify general patterns of growth in lianas of this tribe. We found that cambial activity starts toward the end of the rainy season and onset of the dry season, in contrast to what is known for tropical trees and shrubs. Moreover, their pattern of xylem formation and differentiation is strongly influenced by the presence of massive wedges of phloem produced by a variant cambium. Thus, the variant cambium is the first to commence its activity and only subsequently does cambial activity progress towards the center of the regular region, leading to the formation of confluent growth rings. In summary, we conclude that: the cambium responds to environmental changes; the xylem growth rings are annual and produced in a brief period of about 2 months, something that may explain why lianas possess narrow stems; and furthermore, phloem wedges greatly influence cambial activity.
Resumo:
The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO(3)(-)/NH(4)(+) or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary. GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH(4)(+) assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad`s leaves. (C) 2011 Elsevier GmbH. All rights reserved.
Indecomposable and noncrossed product division algebras over function fields of smooth p-adic curves
Resumo:
We construct indecomposable and noncrossed product division algebras over function fields of connected smooth curves X over Z(p). This is done by defining an index preserving morphism s: Br(<(K(X))over cap>)` --> Br(K(X))` which splits res : Br(K (X)) --> Br(<(K(X))over cap>), where <(K(X))over cap> is the completion of K (X) at the special fiber, and using it to lift indecomposable and noncrossed product division algebras over <(K(X))over cap>. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In [3], Bratti and Takagi conjectured that a first order differential operator S=11 +...+ nn+ with 1,..., n, {x1,..., xn} does not generate a cyclic maximal left (or right) ideal of the ring of differential operators. This is contrary to the case of the Weyl algebra, i.e., the ring of differential operators over the polynomial ring [x1,..., xn]. In this case, we know that such cyclic maximal ideals do exist. In this article, we prove several special cases of the conjecture of Bratti and Takagi.
Resumo:
Let R be a commutative ring, G a group and RG its group ring. Let phi : RG -> RG denote the R-linear extension of an involution phi defined on G. An element x in RG is said to be phi-antisymmetric if phi(x) = -x. A characterization is given of when the phi-antisymmetric elements of RG commute. This is a completion of earlier work.
Resumo:
Let * be an involution of a group G extended linearly to the group algebra KG. We prove that if G contains no 2-elements and K is a field of characteristic p, 0 2, then the *-symmetric elements of KG are Lie nilpotent (Lie n-Engel) if and only if KG is Lie nilpotent (Lie n-Engel). (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.
Resumo:
In this paper we study the spectrum of integral group rings of finitely generated abelian groups G from the scheme-theoretic viewpoint. We prove that the (closed) singular points of Spec Z[G], the (closed) intersection points of the irreducible components of Spec Z[G] and the (closed) points over the prime divisors of vertical bar t(G)vertical bar coincide. We also determine the formal completion of Spec Z[G] at a singular point.
Resumo:
Let ZG be the integral group ring of the finite nonabelian group G over the ring of integers Z, and let * be an involution of ZG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (u(k,m)(x*), u(k,m)(x*)) or (u(k,m)(x), u(k,m)(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ZG.
Resumo:
In this article, we give a method to compute the rank of the subgroup of central units of ZG, for a finite metacyclic group, G, by means of Q-classes and R-classes. Then we construct a multiplicatively independent set u subset of Z(U(ZC(p,q))) and by applying our results, we prove that u generates a subgroup of finite index.
Resumo:
Let G be a group of odd order that contains a non-central element x whose order is either a prime p >= 5 or 3(l), with l >= 2. Then, in U(ZG), the group of units of ZG, we can find an alternating unit u based on x, and another unit v, which can be either a bicyclic or an alternating unit, such that for all sufficiently large integers m we have that < u(m), v(m)> = < u(m)> * < v(m)> congruent to Z * Z.
Resumo:
We present a survey of some results on ipri-rings and right Bezout rings. All these rings are generalizations of principal ideal rings. From the general point of view, decomposition theorems are proved for semiperfect ipri-rings and right Bezout rings.