Cyclic Maximal Ideals of Rings of Differential Operators over Power Series Rings


Autoria(s): BERTONCELLO, Luciene Nogueira; LEVCOVITZ, Daniel
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

In [3], Bratti and Takagi conjectured that a first order differential operator S=11 +...+ nn+ with 1,..., n, {x1,..., xn} does not generate a cyclic maximal left (or right) ideal of the ring of differential operators. This is contrary to the case of the Weyl algebra, i.e., the ring of differential operators over the polynomial ring [x1,..., xn]. In this case, we know that such cyclic maximal ideals do exist. In this article, we prove several special cases of the conjecture of Bratti and Takagi.

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq, Brazil[140412/01-8]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq, Brazil[305371/2006-1]

Identificador

COMMUNICATIONS IN ALGEBRA, v.38, n.5, p.1621-1632, 2010

0092-7872

http://producao.usp.br/handle/BDPI/28830

10.1080/00927870902960372

http://dx.doi.org/10.1080/00927870902960372

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS INC

Relação

Communications in Algebra

Direitos

restrictedAccess

Copyright TAYLOR & FRANCIS INC

Palavras-Chave #Rings of differential operators #D-MODULES #VARIETIES #Mathematics
Tipo

article

original article

publishedVersion