Cyclic Maximal Ideals of Rings of Differential Operators over Power Series Rings
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
In [3], Bratti and Takagi conjectured that a first order differential operator S=11 +...+ nn+ with 1,..., n, {x1,..., xn} does not generate a cyclic maximal left (or right) ideal of the ring of differential operators. This is contrary to the case of the Weyl algebra, i.e., the ring of differential operators over the polynomial ring [x1,..., xn]. In this case, we know that such cyclic maximal ideals do exist. In this article, we prove several special cases of the conjecture of Bratti and Takagi. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq, Brazil[140412/01-8] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq, Brazil[305371/2006-1] |
Identificador |
COMMUNICATIONS IN ALGEBRA, v.38, n.5, p.1621-1632, 2010 0092-7872 http://producao.usp.br/handle/BDPI/28830 10.1080/00927870902960372 |
Idioma(s) |
eng |
Publicador |
TAYLOR & FRANCIS INC |
Relação |
Communications in Algebra |
Direitos |
restrictedAccess Copyright TAYLOR & FRANCIS INC |
Palavras-Chave | #Rings of differential operators #D-MODULES #VARIETIES #Mathematics |
Tipo |
article original article publishedVersion |