Hyperbolic unit groups and quaternion algebras
| Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
|---|---|
| Data(s) |
20/10/2012
20/10/2012
2009
|
| Resumo |
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra. |
| Identificador |
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, v.119, n.1, p.9-22, 2009 0253-4142 |
| Idioma(s) |
eng |
| Publicador |
INDIAN ACAD SCIENCES |
| Relação |
Proceedings of the Indian Academy of Sciences-mathematical Sciences |
| Direitos |
restrictedAccess Copyright INDIAN ACAD SCIENCES |
| Palavras-Chave | #Hyperbolic groups #quaternion algebras #free groups #group rings #units #GROUP-RINGS #Mathematics |
| Tipo |
article original article publishedVersion |