28 resultados para finite complex unitary groups
Resumo:
A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.
Resumo:
Each square complex matrix is unitarily similar to an upper triangular matrix with diagonal entries in any prescribed order. Let A = [a(ij)] and B = [b(ij)] be upper triangular n x n matrices that are not similar to direct sums of square matrices of smaller sizes, or are in general position and have the same main diagonal. We prove that A and B are unitarily similar if and only if parallel to h(A(k))parallel to = parallel to h(B(k))parallel to for all h is an element of C vertical bar x vertical bar and k = 1, ..., n, where A(k) := [a(ij)](i.j=1)(k) and B(k) := [b(ij)](i.j=1)(k) are the leading principal k x k submatrices of A and B, and parallel to . parallel to is the Frobenius norm. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.
Resumo:
Let D( m, n; k) be the semi-direct product of two finite cyclic groups Z/m = < x > and Z/n = < y >, where the action is given by yxy(-1) = x(k). In particular, this includes the dihedral groups D(2m). We calculate the automorphism group Aut (D(m, n; k)).
Resumo:
A square matrix is nonderogatory if its Jordan blocks have distinct eigenvalues. We give canonical forms for (1) nonderogatory complex matrices up to unitary similarity, and (2) pairs of complex matrices up to similarity, in which one matrix has distinct eigenvalues. The types of these canonical forms are given by undirected and, respectively, directed graphs with no undirected cycles. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Let G be a finite group and ZG its integral group ring. We show that if alpha is a nontrivial bicyclic unit of ZG, then there are bicyclic units beta and gamma of different types, such that
Resumo:
In this paper, we determine the lower central and derived series for the braid groups of the projective plane. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is interesting in its own right. The n-string braid groups B(n)(RP(2)) of the projective plane RP(2) were originally studied by Van Buskirk during the 1960s. and are of particular interest due to the fact that they have torsion. The group B(1)(RP(2)) (resp. B(2)(RP(2))) is isomorphic to the cyclic group Z(2) of order 2 (resp. the generalised quaternion group of order 16) and hence their lower central and derived series are known. If n > 2, we first prove that the lower central series of B(n)(RP(2)) is constant from the commutator subgroup onwards. We observe that Gamma(2)(B(3)(RP(2))) is isomorphic to (F(3) X Q(8)) X Z(3), where F(k) denotes the free group of rank k, and Q(8) denotes the quaternion group of order 8, and that Gamma(2)(B(4)(RP(2))) is an extension of an index 2 subgroup K of P(4)(RP(2)) by Z(2) circle plus Z(2). As for the derived series of B(n)(RP(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group B(n)(RP(2)) being finite and soluble for n <= 2, the critical cases are n = 3, 4. We are able to determine completely the derived series of B(3)(RP(2)). The subgroups (B(3)(RP(2)))((1)), (B(3)(RP(2)))((2)) and (B(3)(RP(2)))((3)) are isomorphic respectively to (F(3) x Q(8)) x Z(3), F(3) X Q(8) and F(9) X Z(2), and we compute the derived series quotients of these groups. From (B(3)(RP(2)))((4)) onwards, the derived series of B(3)(RP(2)), as well as its successive derived series quotients, coincide with those of F(9). We analyse the derived series of B(4)(RP(2)) and its quotients up to (B(4)(RP(2)))((4)), and we show that (B(4)(RP(2)))((4)) is a semi-direct product of F(129) by F(17). Finally, we give a presentation of Gamma(2)(B(n)(RP(2))). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved
Resumo:
We classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q).
Resumo:
We consider the problem of classifying those groups whose maximal cyclic subgroups are maximal. We give a complete classification of those groups with this property and which are either soluble or residually finite.
Resumo:
We classify the ( finite and infinite) virtually cyclic subgroups of the pure braid groups P(n)(RP(2)) of the projective plane. The maximal finite subgroups of P(n)(RP(2)) are isomorphic to the quaternion group of order 8 if n = 3, and to Z(4) if n >= 4. Further, for all n >= 3, the following groups are, up to isomorphism, the infinite virtually cyclic subgroups of P(n)(RP(2)): Z, Z(2) x Z and the amalgamated product Z(4)*(Z2)Z(4).
Resumo:
A novel Schiff base-copper(II) complex [Cu(2)L(2)(N(3))(2)](ClO(4))(2) 1, where L = (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), containing azide-bridges between adjacent copper ions in a dinuclear arrangement was isolated and characterized both in the solid state and in solution by X-ray crystallography and different spectroscopic techniques. Azide binding constants were estimated from titrations of the precursor [CuL(H(2)O)(2)](2+) solutions with sodium azide, giving rise to the azido-bridged species, [Cu(2)L(2)(N(3))(2)](2+). Raman spectra showed asymmetric stretching band at 2060 cm(-1), indicating the presence of azido ligands with a symmetric mu(1,) (1) binding geometry. EPA spectra, in frozen methanol/water solutions at 77 K, exhibited characteristic features of copper centers in tetragonal pyramidal coordination geometry, exhibiting magnetic interactions between them. Further, in solid state, two different values for magnetic coupling in this species were obtained, J/k = -(5.14 +/- 0.02) cm(-1) attributed to the mu(1, 1) azide-bridge mode, and J`z`/k = -(2.94 +/- 0.11) cm(-1) for the interaction between dinuclear moieties via water/perchorate bridges. Finally, an attempt was made to correlate structure and magnetic data for this dinuclear asymmetric end-on azido bridged-copper(II) 1 complex with those of another correlated dinuclear system, complex [Cu(2)L(2)Cl(2)](ClO(4))(2) 2, containing the same tridentate diimine ligand, but with chloro-bridged groups between the copper centres.
Resumo:
We report the synthesis and spectroscopic/electrochemical properties of iron(II) complexes of polydentate Schiff bases generated from 2-acetylpyridine and 1,3-diaminopropane, acetylpyrazine and 1,3-diaminopropane, and from 2-acetylpyridine and L-histidine. The complexes exhibit bis(diimine)iron(II) chromophores in association with pyrazine, pyridine or imidazole groups displaying contrasting pi-acceptor properties. In spite of their open geometry, their properties are much closer to those of macrocyclic tetraimineiron(II) complexes. An electrochemical/spectroscopic correlation between E degrees(Fe(III/II)) and the energies of the lowest MLCT band has been observed, reflecting the stabilization of the HOMO levels as a consequence of the increasing backbonding effects in the series of compounds. Mossbauer data have also confirmed the similarities in their electronic structure, as deduced from the spectroscopic and theoretical data. (C) 2008 Elsevier B.V. All rights reserved.