CLASSIFICATION OF SUBALGEBRAS OF THE CAYLEY ALGEBRA OVER A FINITE FIELD
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q). Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP, Brazil[Proc.04/07181-1] CNPq, Brazil Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) FAPERGS, Brazil[Proc.03/0516-2] RFBR[05-01-00797] RFBR SB RAS, Russia[29] SB RAS, Russia SB RAS, Russia SB RAS, Russia[2006.1.2] |
Identificador |
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, v.9, n.5, p.791-808, 2010 0219-4988 http://producao.usp.br/handle/BDPI/30711 10.1142/S0219498810004233 |
Idioma(s) |
eng |
Publicador |
WORLD SCIENTIFIC PUBL CO PTE LTD |
Relação |
Journal of Algebra and Its Applications |
Direitos |
restrictedAccess Copyright WORLD SCIENTIFIC PUBL CO PTE LTD |
Palavras-Chave | #Cayley algebra #Moufang loop #subalgebra #automorphism group #SIMPLE MOUFANG LOOPS #MAXIMAL-SUBGROUPS #AUTOMORPHISM-GROUPS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |