CLASSIFICATION OF SUBALGEBRAS OF THE CAYLEY ALGEBRA OVER A FINITE FIELD


Autoria(s): GRISHKOV, Alexander N.; GIULIANI, Maria De Lourdes Merlini; ZAVARNITSINE, Andrei V.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q).

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP, Brazil[Proc.04/07181-1]

CNPq, Brazil

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)

FAPERGS, Brazil[Proc.03/0516-2]

RFBR[05-01-00797]

RFBR

SB RAS, Russia[29]

SB RAS, Russia

SB RAS, Russia

SB RAS, Russia[2006.1.2]

Identificador

JOURNAL OF ALGEBRA AND ITS APPLICATIONS, v.9, n.5, p.791-808, 2010

0219-4988

http://producao.usp.br/handle/BDPI/30711

10.1142/S0219498810004233

http://dx.doi.org/10.1142/S0219498810004233

Idioma(s)

eng

Publicador

WORLD SCIENTIFIC PUBL CO PTE LTD

Relação

Journal of Algebra and Its Applications

Direitos

restrictedAccess

Copyright WORLD SCIENTIFIC PUBL CO PTE LTD

Palavras-Chave #Cayley algebra #Moufang loop #subalgebra #automorphism group #SIMPLE MOUFANG LOOPS #MAXIMAL-SUBGROUPS #AUTOMORPHISM-GROUPS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion